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Abstract
In this paper, exact solutions to the Einstein’s equations are obtained

for an anisotropic and homogeneous symmetry of Petrov Type D from a
nonlinear fluid that responds to the equation of state Q+Q− = 0 where
Q± =

√
µ1 (−2P1 + µ1)

3/2 ± 2 BP1
a wherein µ1 = µ − Λ, P1 = P + Λ,

and µ, P and Λ are the volumetric energy density, the pressure, and a
constant linked to the concept of dark energy. That equation of state
and what it represents in certain limits of time (when t→ 0 and when
t → ∞) are also analyzed. Two general solutions which are different
because of the degree of initial expansion that a coordinate can have in
relation to a perpendicular plane are obtained. For each solution, two
cases are present: one represents a space-time with real geometry (R)
for all the values of t, and asymptotically in time, this case becomes
an isotropic space-time of FLRW of a dark energy fluid; and the other
one presents a double singularity, so that since the first singularity,
space-time is complex (C) until a certain time t = a ( when the second
singularity is present) from which space-time is real (R) and with the
increase of time, it tends to an isotropic space-time of FLRW from a
dark energy fluid. Then, temperature behavior in relation to time is
obtained.

Keywords: cosmology, exact solution, Einstein, temperature, nonlinear,
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1 Introduction

Cosmological space-times of Petrov Type D of nonlinear fluids and which can
present double singularities have been studied previously in [1] and [2] where
there have been discussions about the great interest that these solutions and
their characteristics close to singularities generate without mentioning other
relevant aspects and their respective literature related to solutions with non-
linear fluids within this symmetry and others. In [2], some of the possible
solutions obtained were complex and had double singularity. Thus, the cos-
mological space-time starts from a first singularity from which it is a real
space-time (R) until a time when a second singularity is present, and space-
time becomes complex (C). The complex part of the interval represents a
space-time that tends to contract meanwhile the real part represents a space-
time that tends to expand asymptotically when t → ∞ transforms into an
isotropic space-time of FLRW that corresponds to the one obtained for the
dark energy model. In this article, solutions are obtained from a nonlinear
fluid equation of which the equation of state has the form Q+Q− = 0 where

Q± =
√
µ− A (−2P − 3A+ µ)3/2 ± 2 B(P+A)

a

µ, P and Λ are the volumetric energy density, the pressure, and a constant
linked to the concept of dark energy respectively. That equation of state
represents a fluid that can be initially interpreted as a diverse-fluid ”cocktail”
and that transforms over time. Solutions could be complex or non-complex
(C) in a time lag between two singularities when the constant of the equation
of state a < 0.

2 Symmetry, Einstein’s Equations, Solutions

and Kretschmann’s Invariant

In this work, the anisotropic and homogeneous symmetry of Petrov Type D
will be used and whose form is [3]

ds2 = Fdt2 − t2/3K(dx2 + dy2)− t2/3

K2
dz2, (1)

where in F and K are functions of t.
An equivalent analysis was conducted in [2] considering that the equation of
state complies with the following equality:

Q+Q− = 0, where Q± =
√
µ1 (−2P1 + µ1)

3/2 ± 2
BP1

a
, (2)

wherein µ1 = µ− Λ, P1 = P + Λ and Λ is the constant linked to the concept
of dark energy and that leads to the next equalities

K = K0e
C1

∫
F1/2

t
dt, (3)
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where the constant K0 without lossing generalities in (3) is considered equal to
1 and C1 = ±2/3 (for each possible value of C1 a different model is obtained).

From Einstein’s equations Gβ
α = κT βα , the equality T µν ;µ = 0 (see [2]) of

(3) and (2) gets for any C1 that the solution of F is

F =
1

3
(
B
√
t2 + at+ Λt2 + 1

) , (4)

wherein a is a constant whose sense will be determined later.
When considering Einstein’s equations, from the solution (4), (3), G0

0 and G1
1

(see [2]) the pressure is

P =
Ba

2t
√
t2 + at

− Λ (5)

and the density µ is

µ =
B
√
t2 + at

t2
+ Λ. (6)

The K function in (3) can be written as

K = e±2σ/3, (7)

where σ has two possible solutions when a > 0,

σ1 =
−4
(
e1F (Tξ,R) + (e2 − e1) Π

(
Tξ, e2

e1
T−2, R

)
− S1

)
√
−e2 + e4

√
e3 − e1

√
1 + 3 Λa2e2e1

(8)

and when a = −b < 0,

σ2 =
4 ( e2F (Tη,R) + (e1 − e2) Π (Tη, T−2, R)− S2)√

−e2 + e4
√
e3 − e1

(9)

in (8) and (9) functions F (ν,m) and Π(ν, n,m) are the incomplete elliptic
integral of the first kind and the incomplete elliptic integral of the third
kind respectively. ν is the sine of amplitude, n is the characteristic and m

the parameter, variable ξ =

√(
t+
√
t(t+a)

)
(e1−1)+e1a(

t+
√
t(t+a)

)
(e2−1)+e2a

, constants T =
√
−e2+e4
e4−e1 ,

R =
√

e2−e3
−e3+e1T

−1, variable η =

√(
t+
√
t(t−b)

)
(e1−1)+b(

t+
√
t(t−b)

)
(e2−1)+b

, constants of integra-

tion S1 = e1F (Tβ,R) + (e2 − e1) Π
(
Tβ, e2

e1
T−2, R

)
and S2 = e2F (Tβ,R) +

(e1 − e2) Π (Tβ, T−2, R) wherein β =
√

1−e1
1−e2 and constants ek in solution (8)

are the roots of the equation
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(1− x2) (x2 − 3Bax− 1) = 3 Λ a2x4, and in solution (9),
(1− x2) (x2 − 3Bbx− 1) = 3 Λ b2, so the roots (usually complex) are taken

counterclockwise increasing with the index k = 1..4 and when graphed in a
rectangular, coordinate systems x and y where a root ek has the form ek =
xk + yki. For roots that are multiples of others, (ek = Ael), the first one to be
taken is the one with the lowest absolute value.

3 Singularties and Kretschmann’s Invariant

In the study of possible singularities of a given space-time, Kretschmann’s
invariant is used (Krets = RµναβRµναβ), and its relevance is discussed in [3].
For the solutions found (with C1 = ±2/3), the invariant has the form

Krets± = W± + U, (10)

where

U =
9B2t (20 t2 + 52 ta+ 41 a2)− 24

√
t (t+ a) (−6 Λ t3 + 3 Λ t2a)B

108t4 (t+ a)

and

W± =
8

27

2

(√
3B
√
t (t+ a) + 3 Λ t2 + 1± 1

)2

+ 9 t4Λ2

t4

and the positive sign is taken when C1 = 2/3 and the negative one if C1 =
−2/3. From Kretschmann’s invariant (10), it is known that a singularity exists
in t = 0 for any value of C1 and of a. When C1 = 2/3, Kretschmann’s invariant
presents a singularity of t = 0 equal to Kasner’s ED1 (with a depth order of
t−4) discussed in [3]. When C1 = −2/3, the singularity has a depth order of
t−3 when a 6= 0. If a < 0, Kretschmann’s invariant shows one more singularity
when t = |a|.

4 Analysis of Solutions

4.1 Case a > 0

When a > 0 and t > 0, solutions present only one singularity in t = 0 as it can
be seen in (10). Constant S1 in (8) has a form similar to σ1, but it requires of
the change of ξ → L. In this case, the solution for values of t −→∞ becomes
isotropic and of the form of dark energy analyzed in [3]. The density and
pressure, µ and P , in (6) and (5) when t→ 0 tends to µ −→∞ and P −→∞.
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In close proximity to t = 0, pressure and density, P and µ, can be written as
an addition form

P = −Λ− 2B

3

∞∑
n=0

(
n∏
k=0

(
3

2
− k)

)
(n− 1

2
)tn−3/2

an−1/2n!
(11)

and

µ = Λ +
2B

3

∞∑
n=0

(
n∏
k=0

(
3

2
− k)

)
tn−3/2

an−1/2n!
. (12)

Models with linear equations of state of type Pλ = λµλ in anisotropic space-
times of Petro type D comply with (see [3])

µλ =
αλ
t1+λ

, and Pλ =
λαλ
t1+λ

,

thus, when comparing terms from (11) and (12), it is possible to come to a
conclusion that the fluid behaves as a Hard Universe mixture (cocktail) (λ =
1/2), quintessence (λ = −1/2), dark energy (λ = −1), Phantom (λ = −(2n+
1)/2, n ∈ N), so that Phantom energy values, like n, are odd. That energy is
extracted from the energy of a fluid (negative energy); on the contrary, even
n adds energy to a fluid (possitive energy).
As t increases, the fluid changes and for long-term times, it shows that

µ = Λ +
B

t

∞∑
n=0

(
n∏
k=1

3
2
− k
k

)
an

tn
and (13)

P = −Λ +
Ba

2t2

∞∑
n=0

(
n∏
k=1

1
2
− k
k

)
an

tn
, (14)

when comparing terms (13) and (14), the fluid acts like a dark energy mixture
(cocktail), dust (λ = 0), Zeldovich (λ = 1) and ekpyrotics fluids (λ = n + 1,
n ∈ N), and for values when n is odd, that energy is extracted from the en-
ergy of a fluid (negative energy), but when n is even, it adds energy to a fluid
(possitive energy).

4.2 Case a < 0

When a < 0 and t > 0 of (10), solutions present double singularity in t = 0
and in t = |a| = b. They are complex (C) for values of t ∈]0, b[ so µ = Λ + iµI
and P = −Λ + iPI where µ and P represent a fluid mixture similar to the
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one in (12) and (11) but with energies from Hard Universe and dark energy
which are the possitive ones. When considering (4), (6) and (5) likewise (3),
the interval takes the form ds2 = ds2R − ids2I where

dsR
2 = FRdt2 − eBc cos (Bs) t

2/3
(
dx 2 + dy2

)
− e−2Bc cos (2Bs) t

2/3dz 2, (15)

dsI
2 = −FI dt2 + eBc sin (Bs) t

2/3
(
dx 2 + dy2

)
− e−2Bc sin (2Bs) t

2/3dz 2, (16)

and

Bc = C1

∫
4
√

FR2 + FI 2 cos

(
1

2
arctan

(
FI

FR

))
t−1dt, (17)

Bs = C1

∫
4
√

FR2 + FI 2 sin

(
1

2
arctan

(
FI

FR

))
t−1dt, (18)

FR =
3 t2Λ + 1

(3 t2Λ + 1)2 + 9B2 (−t2 + tb)
,

FI = −3
B
√
−t2 + tb

(3 t2Λ + 1)2 + 9B2 (−t2 + tb)
.

(19)

Real and imaginary parts of the metric for very small values of t have the form

dsR
2 =

(
1− 9B2tb

)
dt2 −

(
1± 1

4
B2bt (9± 8)

)
t2/3±2/3

(
dx 2 + dy2

)
+

−
(

1 +
1

2
B2bt (∓9 + 16)

)
t2/3∓4/3dz 2,

(20)

and

ds i
2 = 3B

√
tb

(
dt2 ∓ 2

3
t2/3±2/3

(
dx 2 + dy2

)
± 4

3
t2/3∓4/3dz 2

)
(21)

wherein the sign for ± is possitive when C1 = 2/3 and negative when C1 =
−2/3, and in ∓ case, it is the opposite. From (21), the imaginary part of space-
time strictly for short-term times is conformal of Petrov type O if C1 = −2/3
(see [3]). In this case, the imaginary space-time emerges when time starts as a
spot, and if C1 = 2/3, it surfaces as a line in z of Petrov type D. It is obtained
from (16) that in the expansion process when C1 = 2/3, the plane x, y is
expanded to a maximum given value in a time that complies with the equation

3C1 sin(θ + α) + 2G sin(α) = 0 wherein G = 4

√
(3 t2Λ + 1)2 − 9B2t (t− b),

θ =
1

2
arctan

(
3
B
√
t (−t+ b)

3 t2Λ + 1

)
y α =

∫
C1 sin (θ) dt

tG
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later, it disappears in t = b. Then, axis z contracts since the beginning until
it vanishes in t = b. When C1 = −2/3, the imaginary space-time emerges as
a spot that expands itself so axis z passes through a maximum expansion of
time t that meets the equation criteria 3C1 sin(θ + α) − G sin(α) = 0. The
imaginary space-time ends disappearing in t = b.

5 Temperature

In an equivalent way as the one stated on [2], temperature depends on the
time that forms it

T =
T0
(
t+ 3a

2

)
√
t2 + at

, (22)

where T0 > 0 is a constant of integration. From (22), when t→∞ temperature
tends to T0 for any value of a (currently, it should be ≈ 2.7K). For values of
a = −b < 0, temperature is a magnitude that shows at the beginning of space-
time and in the imaginary space-time only. By being singular in t = b, going
through negative values in the interval t ∈]b, 3b/2[, being null in t = 3b/2, it
finally tends to T −→ T0 when t−→∞.

6 Conclusions

Cosmological exact solutions were obtained from Einstein’s equations (two gen-
eral solutions that differ from one another by the degree of initial expansion).
For the nonlinear fluid case (nonlinear equation of state), if a constant a < 0,
they have double singularity, and if a > 0, they have only one singularity. If
a < 0, the first singularity in t = 0 presents a volumetric energy density µ and
an infinite pressure, and when t = |a|, the second singularity has a tendency
for |P | → ∞ but finite to µ. If constant a > 0, the interval, P and µ are real
(R), and as time increases, it becomes into an interval of the usual type for
the dark energy model of FLRW. However, if a < 0, the interval is complex
(C) in a lapse where singularities are present (ds2 = ds2R − ids2i ∈ C). The
imaginary space-time ds2i can emerge as a line in axis z or as a spot depending
on the sign of a constant, but in any case, the imaginary interval disappears
in t > |a|. The logic behind the nonlinear equation of state Q+Q− = 0 used in
this paper can be interpreted as a linear fluid mixture (cocktail) that changes
in given time lags. Once temperature was analyzed, it was determined that
when time is complex, this one is imaginary and tends to be constant when
time increases, in any case.
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