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Abstract 

A mathematical model of snail RPa1 neurons described by a system of nonlinear 

ordinary differential equations can exhibit a chaotic bursting state under a 

particular default condition. Here, a numerical simulation of the model was 

conducted to study the sensitivity of a chaotic bursting state under the default 

condition to an increase or decrease in two system parameters: transient voltage-

dependent calcium conductance and stationary calcium-inhibited calcium 

conductance. The simulation results indicate that when the former conductance is 

increased, a periodic bursting state can appear in which the duration of each burst 

is much shorter than in the default condition. In contrast, when the latter 

conductance is decreased, a periodic bursting state can appear in which each burst 

duration is much shorter than in the default condition. 
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1 Introduction 
 

   It is important to determine how the membrane potential of excitable cells such 

as muscle and nerve is regulated by various ionic conductances [1, 2]. A previous 

study of a mathematical model of mouse urinary bladder smooth muscle reported,  
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for example, that the action potential could be regulated by calcium conductance 

[1]. Another study of a mathematical model of snail RPa1 neurons described by a 

system of nonlinear ordinary differential equations (ODEs) based on the Hodgkin-

Huxley formalism found that bursting involving more complex dynamics than 

action potential could also be regulated by calcium conductance [3]. Specifically, 

that study concluded that the burst frequency of the model was differently 

regulated by two types of calcium conductance (i.e., transient voltage-dependent 

calcium conductance and stationary calcium-inhibited calcium conductance), a 

conclusion obtained by investigating the sensitivity of a periodic bursting state to 

variation of the above two types of calcium conductance. The mathematical model 

of snail RPa1 neurons can exhibit a bursting state that is more complex than a 

periodic bursting state (i.e., chaotic bursting state) under a specific condition [2]. 

It is crucial to investigate the sensitivity of a periodic bursting state to variation of 

calcium conductance and the sensitivity of a chaotic bursting state to conductance 

variation to understand better the sensitivity of a bursting state to variation of 

calcium conductance. Although the former case was clarified in the previous 

study [3], the latter case was not. Therefore, we performed a numerical simulation 

of the model to reveal a chaotic bursting state's sensitivity to variation of the two 

types of calcium conductance. 

 

2 The Mathematical Model 
 

   The sensitivity of a chaotic bursting state to variation of two system parameters 

[i.e., transient voltage-dependent calcium conductance (gCa) and stationary 

calcium-inhibited calcium conductance (gCaCa)] was investigated by numerical 

simulation of a mathematical model of snail RPa1 neurons [2] described by a 

system of ODEs: 
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, in which V (mV) describes the membrane potential of snail RPa1 neurons, mB, 

hB, m, h, n, and mCa describe the gating variables, and [Ca] (mM) describes the 

concentration of intracellular calcium (the state variables); t (s) is time, and F is a 

Faraday constant. Equations (1)–(8) were numerically solved using the free, open-

source software Scilab (http://www.scilab.org/).  
 

3 Numerical Results 
 

   First, we performed a numerical simulation by varying the value of gCa. The 

default value of gCa is 1.0 S. We illustrate in Figure 1 the time courses of the 

membrane potential of the snail RPa1 neuron model under the following 

circumstances for gCa: smaller than (Figures 1a, 1b, and 1c), equal to (Figure 1d), 

and larger than that of the default condition (Figures 1e, 1f, and 1g). The model 

indicates the appearance of a chaotic bursting state under the default gCa 

condition—various types of bursting indicated as “d1,” “d2,” “d3,” “d4,” and “d5” 

(Figure 1d). Similarly, when the gCa value is smaller than the default value, the 

model also shows a chaotic bursting state—various types of bursting indicated as 

“a1,” “a2,” “a3,” “a4,” “a5,” and “a6” (Figure 1a) and as “b1,” “b2,” “b3,” “b4,” 

and “b5” (Figure 1b). However, when the gCa value is slightly smaller than the 

default value (i.e., gCa is 99%), the model shows a periodic bursting state—after 

the first bursting indicated as “c1,” bursting indicated as “c2” periodically appears 

(Figure 1c). When the gCa value is slightly larger than the default value (i.e., gCa is 

101%), the model shows a periodic bursting state—the first bursting indicated as 

“e1,” followed by that indicated as “e2” (Figure 1e). Similarly, when gCa is further 

increased, the model also shows a periodic bursting state, designated as “f1” and 

“g1” (Figure 1f and 1g). Additionally, the burst duration of a periodic bursting 

state (“e2” in Figure 1e, “f1” in Figure 1f, and “g1” in Figure 1g) is much smaller 

than that of a chaotic bursting state under the default gCa condition (Figure 1d). 

Second, we performed a numerical simulation by varying gCaCa. The gCaCa is 

0.01 S under the default condition. We illustrate in Figure 2 the time courses of 

the membrane potential of the snail RPa1 neuron model when the gCaCa value is 

smaller than (Figure 2a, 2b, and 2c), equal to (Figure 2d), and larger than that of 

the default condition (Figure 2e, 2f, and 2g). Under the default gCaCa condition, 

the model shows a chaotic bursting state—various types of bursting indicated as 

“d1,” “d2,” “d3,” “d4,” and “d5” appear (Figure 2d). The model shows a periodic  

http://www.scilab.org/
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bursting state (Figure 2a and 2c) or a chaotic bursting state (Figure 2b) when the 

gCaCa value is smaller than the default value. Bursting indicated as “a2” 

periodically appears after the first bursting designated as “a1” (Figure 2a) when 

gCaCa is 97%. In particular, the burst duration of a periodic bursting state (“a2” in 

Figure 2a) is much smaller than that of a chaotic bursting state under the default 

gCaCa condition (Figure 2d). Similarly, when the value of gCaCa is 99%, bursting 

indicated as “c1” periodically appears (Figure 2c). In contrast, bursting types 

indicated as “b1,” “b2,” “b3,” and “b4” (Figure 2b) appear when the gCaCa value is 

98%. The model shows a chaotic bursting state—various types of bursting 

indicated as “f1,” “f2,” “f3,” and “f4” (Figure 2f) and as “g1,” “g2,” “g3,” “g4,” 

“g5,” and “g6” (Figure 2g) appear when the gCaCa value is larger than the default 

value. However, when the gCaCa value is slightly larger than the default value (i.e., 

gCaCa is 101%), the model shows a periodic bursting state—bursting indicated as 

“e1” periodically appears (Figure 2e). 

 

4 Conclusion 

 

The present study reveals how a chaotic bursting state of the snail RPa1 neuron 

model changes according to specific ionic conductance parameters (i.e., gCa and 

gCaCa). Previous studies reported that changes in different ionic conductance 

parameters in the snail RPa1 neuron model were capable of generating a chaotic 

bursting state [4, 5]. However, how this state is produced by variation of ionic 

conductance is dependent on the type of ionic conductance. In one case, a change 

of the spike-generating sodium conductance changes the dynamical state of the 

model such that a periodic bursting state → a chaotic bursting state → a periodic 

bursting state [4]; in another instance, a change of the voltage-independent 

potassium conductance produces a periodic spiking state → a chaotic spiking state 

→ a chaotic bursting state → a periodic bursting state [5]. Therefore, it is 

important to determine how a chaotic bursting state generated by changes of 

calcium conductance influences classification as the former or the latter. Based on 

the present results (Figures 1c, 1d, and 1e, and Figures 2c, 2d, and 2e), a chaotic 

bursting state generated by calcium conductance change is classified as the former 

case. A previous study of a bursting mathematical model that differed from the 

snail RPa1 neuron model also reported that the above two cases generated a 

chaotic bursting state [6]. However, that model is a three-dimensional dynamical 

system [6]. The snail RPa1 neuron model used here is a much higher dimensional 

dynamical system (i.e., an eight-dimensional dynamical system). A previous study 

investigated how a periodic bursting state of the snail RPa1 neuron model was 

modulated by variation of calcium conductance and reported that the bursting 

frequency was modulated by variation of these ionic conductances [3]. However, 

how a chaotic bursting state of the snail RPa1 neuron model is modulated by 

variation of calcium conductance was not clarified by that study. Importantly, the 

present study clearly indicates that variation of calcium conductance results in the 

chaotic bursting state under the default condition being changed to a periodic 

bursting state in which the burst duration is much shorter. 
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Figure 1. The time courses of the membrane potential of the snail RPa1 neuron 

model under variable gCa conditions: (a) 97% gCa, (b) 98% gCa, (c) 99% gCa, (d) 

100% gCa, (e) 101% gCa, (f) 102% gCa, and (g) 103% gCa. The horizontal axis 

indicates t (s) and the vertical axis indicates V (mV) in all the panels. a1–a6, b1–

b5, c1–c2, d1–d5, e1–e2, f1, and g1 denote bursting patterns observed in each gCa 

condition. 

 

 

(a) 97% gCa a1    a2     a3           a4             a5        a6

(b) 98% gCa b1    b2     b3 b4     b5

(c) 99% gCa c1   c2

(d) 100% gCa d1    d2           d3            d4              d5

(e) 101% gCa e1   e2

(f) 102% gCa f1

(g) 103% gCa g1
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Figure 2. The time courses of the membrane potential of the snail RPa1 neuron 

model under variable gCaCa conditions: (a) 97% gCaCa, (b) 98% gCaCa, (c) 99% 

gCaCa, (d) 100% gCaCa, (e) 101% gCaCa, (f) 102% gCaCa, and (g) 103% gCaCa. The 

horizontal axis indicates t (s) and the vertical axis indicates V (mV) in all the 

panels. a1–a2, b1–b4, c1, d1–d5, e1, f1–f4, and g1–g6 denote bursting patterns 

observed in each gCaCa condition. 

 

 

(a) 97% gCaCa a1    a2

(b) 98% gCaCa b1    b2            b3            b4

(c) 99% gCaCa c1

(d) 100% gCaCa d1    d2           d3            d4              d5

(e) 101% gCaCa e1

(f) 102% gCaCa f1    f2                   f3            f4                              

(g) 103% gCaCa g1      g2   g3   g4           g5            g6
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