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Abstract

In a previous paper, it was found that a two-dimensional wave equa-
tion for a cord (thin rope) describing waves on a cord under the non-
gravitational field reduces to a ordinary linear wave equation under the
micro-amplitude approximation. And, the wave equation was denoted
to have a unimodal solitary wave solution. In this paper, two cords are
connected to one cord and all of them have the same linear density.
Moreover, edges of the former cords are fixed to a bar which is swung to
induce unimodal solitary waves propagating on them at the same time.
There occur two reflective waves and a transmitted wave corresponding
to the incident waves against a boundary among three cords. It is de-
noted that an amplification factor of the transmitted wave amplitude
becomes 4/3 times. This is only one-step amplifier. A n-step amplifier
makes the amplification factor to be (4/3)n.

Keywords: wave equation, unimodal solitary wave, transmitted wave, n-
step amplifier, amplification factor

1 Introduction

In 2019, we derived a two-dimensional wave equation for a cord (thin rope)
under the non-gravitational field. We also obtained its unimodal solitary wave
solution propagating on a cord with a sufficiently small amplitude.[2] There,
we made it clear that the wave equation for a cord reduces to an ordinary linear
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wave equation under the micro-amplitude approximation. In general, the wave
equation has the d‘Lambert‘s solution.[1] Then, we found that two unimodal
or kink solitary waves propagating in the opposite directions are stable against
a collision.[2],[3]

In 2020, we have pointed out that the cord wave equation system and the
string vibration system have many similar points in the sense that the same
wave equations of them are derived under the micro-amplitude approximation
and have multi-order modes of stationary sine waves.[4] In a previous paper,
we have suggested cosmic experimental plans in International Space Station
(ISS) to demonstrate a collision of two solitary waves under non-gravity. [5]

The aim of the present paper is to study the n-step amplifier from 2n

incident solitary waves to one tansmitted solitary wave. A 1-step amplifier
is composed of two codes connected to one cord and all of them have the
same linear density. The edges of the former cords are fixed to the bar which
is swung to induce incident solitary waves at the same time propagating on
them. Then, there appears an amplified transmitted solitary wave on the
latter cord. Brief outline of this paper is denoted as follows. In Sect.2, we
present the cord wave equation for the wave solutions propagating on the cord
under the non-gravitational field. There, we point out that it reduces to a
wave equation under the micro-amplitude approximation. In Sect.3.1, we take
up the unimodal solitary wave solution of the wave equation as the incident
wave expression. And, we derive the amplification factor of the transmitted
wave. In Sect.3.2, we study the n-step amplifier. And concretely, we derive
each amplification factor of 1, 2, 3-step amplifier. In Sect.3.3, we denote a
numerical example of the amplified unimodal solitary waves. The last section
is devoted to discussion. There, we investigate a problem that there occurs an
inverse phase between the incident wave and the reflective wave. [7]

2 Wave Equation for Cord and Its Solitary

Wave Solution

First, we assume that no external forces such as gravity are exerted on a
cord and that stretching and contraction of a cord are negligible. And, we let
a cord lie along the x-axis and a wave propagate on the xy-plane.

Next, we study the wave equation for a cord. The equation of motion for
a cord reads

σ
∂2z

∂t2
=

∂

∂s

(
T
∂z

∂s

)
, (2.1)

where z = x + iy, t is time, s an arclength along a cord, σ a linear density of
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the cord, and T a norm of the tension vector. Here, we should remark that

zs = eiθ, (2.2)

x2s + y2s = 1, (2.3)

where (cos θ, sin θ) is a unit tangential vector, and subscript s denotes partial
differentiation with respect to s here and hereafter. Next, we shall introduce
the following theorem.[2]

Theorem 1 T is constant when there exists such a form of a solution as
z(s, t) = z(ξ) = z(s− ct), where c is an arbitrary constant.

Then, Eq.(2.1) reduces to

∂2z

∂t2
− c2∂

2z

∂s2
= 0, (2.4)

where c2 = T/σ. Under the micro-amplitude approximation, x = s holds.[2]
And, Eq. (2.4) becomes an ordinary linear wave equation,

∂2u

∂t2
− c2∂

2u

∂x2
= 0, (2.5)

where u is a displacement of a cord from the x-axis instead of y. This ordinary
linear wave equation means that under the micro-amplitude approximation
the present physical system is the linear wave one and it has the d‘Alembert‘s
solution, u = h(x− ct) + k(x+ ct).

Then, the sufficiently small unimodal solitary wave solution reads [2]

u = δsech(x− x0 − ct) (δ ≈ 0). (2.6)

3 Multi-Step Amplifier and Transmitted Wave

Now, we let two cords with the same linear density σ be connected to one
cord via a joint with negligible mass and lie along the x-axis. The incident
waves propagate rightward on the former cords at the same time by the bar
to which their edges are fixed and the amplified transmitted wave propagates
rightward on the latter cord with the same linear density σ. This is a 1-step
amplifier system. In Fig.1, we show a rough sketch of this system.

3.1 1-step amplifier and transmitted wave

Here, from Eq.(2.6), we consider an incident unimodal solitary wave solution
u0:

u0 = δsech(x− ct) (δ ≈ 0), (3.1)
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Figure 1: Rough sketch of 1-step amplifier.

and reflective and transmitted unimodal solitary wave solutions u1 and u2 and
their velocity c:

u1 = k1δsech(x+ ct), (3.2)

u2 = k2δsech(x− ct), (3.3)

c2 = T/σ, (3.4)

respectively.
The energy flow vE is expressed in the form: [8], [6]

vE = −T ∂u
∂x

∂u

∂t
, (3.5)

where E is an energy density. Then, the energy E transmitted by the wave u
becomes

E =

∫ ∞
−∞

vEdx = −T
∫ ∞
−∞

∂u

∂x

∂u

∂t
dx. (3.6)

Substituting Eq.(3.1) into Eq.(3.6), the energy E0 of the incident wave is ex-
pressed as

E0 = Tδ2c

∫ ∞
−∞

tanh2(x− ct)sech2(x− ct)dx =
2

3
Tδ2c. (3.7)

Similarly, for the energies E1 and E2 of the reflective and transmitted waves,
respectively, we get

E1 =
2

3
Tk1

2δ2c, (3.8)

E2 =
2

3
Tk2

2δ2c. (3.9)
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Due to the energy conservation law E0+E0 = E1+E1+E2 with Eqs.(3.7)-(3.9),
we obtain

2 = 2k1
2 + k2

2. (3.10)

In the same manner, the expression of the momentum p0 transmitted by the
incident wave reads [6]

p0 = σ

∫ ∞
−∞

∂u

∂t
dx = 2cσδ. (3.11)

Similarly, p1 and p2 of the reflective and transmitted waves, respectively, be-
come

p1 = 2cσk1δ, (3.12)

p2 = 2cσk2δ. (3.13)

Due to the momentum conservation law p0 +p0 = p2−p1−p1 with Eqs.(3.11)-
(3.13), we obtain

2 = k2 − 2k1. (3.14)

Eliminating k2 from Eqs.(3.10) and (3.14), we have

k1 = −1

3
, or −1. (3.15)

In the above result, the latter is an invalid solution, so that we have

k1 = −1

3
. (3.16)

Eqs.(3.16) and (3.14) yield

k2 =
4

3
. (3.17)

Accordingly, the amplification factor of the 1-step amplifier becomes 4/3. Next,
we shall derive expressions of the reflectivity Rf and the transmissivity Tr. The
reflectivity Rf becomes

Rf = 2E1/2E0 = k1
2 =

1

9
. (3.18)

Similarly, the transmissivity Tr becomes

Tr = E2/2E0 =
k2

2

2
=

8

9
. (3.19)

From Eq.(3.16), we find that negative k1 yields an inverse phase of the reflective
waves.
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3.2 N-step amplifier

In this subsection, we study the n-step amplifier which is composed of the n
connected 1-step amplifiers. In Fig.2, we show a rough sketch of the 2-step
amplifier. The transmitted wave becomes 4/3 times of the incident wave in
each 1-step amplifier. Hence, the amplification factor of the n-step amplifier
becomes (4/3)n. Concretely, each amplification factor of 1, 2, 3-step amplifier
is about 1.33, 1.78, 2.37 times, respectively.
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σ

σ

σ

σ

σ

Figure 2: Rough sketch of 2-step amplifier.

3.3 Numerical example of amplified transmitted waves

Here, we shall present numerical example for the very small incident unimodal
solitary waves and the amplified transmitted wave. We consider a case for
δ = 0.007, and k2 = 4/3 for the 1-step amplifier. In this case, the reflectivity
Rf = 0.111 (11.1%) and the transmissivity Tr = 0.889 (88.9%). In Fig.2,
we plot the curves of the incident wave, and the amplified transmitted waves
when 1, 2, 3-step amplifier. There, we find that the very small incident wave
becomes detectable.

4 Discussion

In the present physical system, we have made sure that there occur the
reflections and the amplified transmission for the incident waves at the bound-
ary of two and one cords with linear density σ. Owing to the result such
as the occurrence of the reflections and the transmission of waves under the
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Figure 3: Incident wave and amplified transmitted waves.

non-gravitational field, the analysis in this paper may be useful for students to
learn the wave theory. When 2σ > σ, there occurs the inverse phase. This fact
seems strange compared with the reflection of a light wave at a boundary of
different density media. We explain this problem in appendix A.[7] At the end
of this paper, we propose a cosmic experimental plan that we demonstrate the
reflections and the amplified transmission phenomena in International Space
Station (ISS) under non-gravity.

A Connected two cords with different linear

densities

In Ref.[6], we have found that there occurs the inverse phase between the
incident wave and the reflective wave at the boundary of the cords with the
different linear densities σ1(incident) > σ2(transmitted). This fact is different
from the case of electromagnetic waves. We try to explain this reason.[7] First,
we shall introduce two impedances η1 (incident) and η2 (transmitted), and a
reflective coefficient Rf and a transmission coefficient Tr as follows

Rf = (η2 − η1)/(η1 + η2), Tr = 2η2/(η1 + η2), (A.1)

where η =
√
µ/ε ∝

√
1/ε. Hence in case of light waves, when the medium

density is large, the impedance η1 becomes small and Rf > 0 (the identical
phase). Here, the intensity I of a plane wave is defined as I = |E|2/(2η) ∝∫
vEdx = (2/3)Tδ2α.[6] And, taking into account |E|2 ∝ δ2 and α =

√
T/σ,[6]

we have η ∝
√
σ. Accordingly in case of cord waves, when the linear density
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σ1 is large, the impedance η1 becomes large and Rf < 0 (the inverse phase).
Regarding the phase shift between the incident wave and the reflective wave,
thus we have been able to explain the reason of the opposite phenomena here
between electromagnetic waves and cord waves.
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