Advanced Studies in Theoretical Physics
Vol. 13, 2019, no. 4, 155 - 174
HIKARI Ltd, www.m-hikari.com
https://doi.org/10.12988 /astp.2019.81246

A Geometric Version for the Description
of the Dynamics of Different Models
O. P. Zandron

Facultad de Ciencias Exactas Ingenieria y Agrimensura de la UNR
Av. Pellegrini 250, 2000 Rosario, Argentina

This article is distributed under the Creative Commons by-nc-nd Attribution License.
Copyright (©) 2019 Hikari Ltd.

Abstract

In many of our works, and over the years, the dynamics of different
models were analyzed from a geometric point of view. In this work the
advantages of the applications of this formalisms are studied compara-
tively for models that have diverse origins, from gravity and supergravity
models, through models of condensed matter, to models of productive
systems. The geometrical approach it is very useful tool for the study
of the dynamics, and it is possible to apply it with the correct interpre-
tation of the variables in game. In this paper we try to study the scope
of this application.

Keywords: Geometric Action; Canonical Exterior Formalism; Gravity;
Productive System

1 Introduction

1.1 Gravity and Strings Models

For years there has been an extensive bibliography that treats the geometric ap-
proaches to gravity and supergravity models in different dimensions, and from
various points of view. In these works, the first applications of the canonical
exterior formalism (FCE) to the mentioned models proved to be very effective.
Therefore, and given its similarity to the models that we will try to discuss,
we will do a joint analysis (gravity or supergravity and strings, obtained from
the previous ones by dimensional reduction).
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In all these models, the geometrical structure is analyzed in the framework
of the canonical exterior formalism. In this context, the motion equations of
the dynamical field and the constraints are found and analyzed. It can be
seen how the use of the canonical exterior formalism is more adequate and
simple because of its manifest covariance in all the steps. The relationship
between the form brackets defined in the canonical exterior formalism and the
Poisson-brackets is defined. Later on, the Dirac-brackets are written by using
the second class constraints provided by the canonical exterior formalism. As
it can be seen the canonical exterior formalism allows to show how the later
canonical quantization of the model is facilitated.

A brief description allows to clarify the ideas. Initially, it is important to
mention that the analysis of the role of the different fields is fundamental in
all models.

Two-dimensional gravity and supergravity models were constructed from
different point of view, and as already said there is a vast literature on the
subject matter, for example, linear gravity theories based on the Riemann
scalar curvature R. The first model of two-dimensional gravity was constructed
by Jackiw and Teitelboim by means of dimensional reduction of the usual
Einstein-Hilbert action in (2 4 1) dimensions, [1, 2, 3].

The geometrical structures of the different models are generally the de
Sitter or anti-de Sitter groups. All these models have the remarkable prop-
erty of possessing a topological and gauge invariant formulation. Instead, the
"string-inspired” models are based on the extended Poincare group. Given the
possibility of obtaining solutions of ”black-hole” this models and your study,
becomes interesting from the quantum point of view.

The two-dimensional reduction of the invariant action is done by means
of the Kaluza-Klein ansatz, decomposing the three-dimensional metric into a
two-dimensional metric, with a gauge field A = A, dz* and a scalar field §. The
dimensional reduction procedure yields a two-dimensional topological theory.
In order to give the discussion to a global level, the action is written by using
target space coordinates. As it can be seen, the use of such coordinates brings
some advantages from classical as well as quantum point of view, [4, 5, 6, 7, §].

Besides, as it is well known the 2D conformal supergravity is the proper
framework for the description of superstring theories, [9, 10, 11]. This intuitive
idea is originated by observing that two is the dimension of the world-sheet
(WS) spanned by a one-dimensional object while propagating in an external
space-time, named target manifold M;s,4ee. The two-dimensional manifolds
play an important role as they are responsible for the fundamental geometric
structure in superstring theory. Likewise, in order to make local the graded
algebra, the two-dimensional "vielbein” (V') and the two-dimensional ”grav-
itino” () are needed.

The gravitational field must be interpreted as a Lagrangian multiplier for
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the corresponding constraints giving the vanishing condition of the matter
fields stress-energy tensor. Consequently, the whole gravitational formalism
reduces to a theory of boundary conditions in two-dimension and so, only its
topology is the matter of interest. In this context, the Lagrangian formalism
in components and Noether theorem acquire a singular importance.

1.2 t-J Model

On the other hand, different geometrical formalisms were applied to the study
of the t-J model (the Faddeev-Jackiw and Lagrangian formalisms).

In this sense, a Lagrangian formalism in which the field variables are di-
rectly the Hubbard operators it is a natural representation to treat the elec-
tronic correlation effects, [12, 13, 14]. In this approach the Hubbard operators
representing the real physical excitations are treated as indivisible objects.
The t-J model is one of the better candidates to explain the phenomenology of
High-Tc superconductivity, and it contains the main physics of doped holes on
an antiferromagnetic background. Our starting point was the construction of a
particular family of first-order constrained Lagrangians by using the Faddeev-
Jackiw (FJ) symplectic method, [15], in the supersymmetric version, [16, 17].
The t-J model is usually studied in the framework of the slave-particle repre-
sentations, [18]. As is known the slave-particle models exhibit a local gauge
invariance which is destroyed in the mean field approximation. This local
gauge invariance has associated a first-class constraint which is difficult to
handle in the path-integral formalism. In the t-J model, in which spin and
charge degrees of freedom are present, the Hubbard operators represent the
real physical excitations, and verifies the graded algebra spl(2,1) given by:

[(XP X}ﬂi = 05(677 X0 £ 599 X70) (1)

the indices a, £, 7, 0 run in the values +, —, and 0; the + sign must be used
when both operators are fermion-like, otherwise it corresponds the — sign, and
1, j denote the site indices.

The purpose is to find the family of first-order Lagrangians which can
be mapped in the slave-fermion representation, written in terms of fermion-
like and boson-like Hubbard operators. The family of Lagrangians and the
constraint structure of the model will be determined by using the Faddeev-
Jackiw (FJ) symplectic method, [15]. The set of constraints is second-class
one, [13, 14]. Then, by means of the path-integral technique, the correlation
generating functional is written in terms of the effective Lagrangian, which re-
sults non-polynomial. Therefore, we study the general perturbative formalism.
By defining proper propagators and vertices, the standard Feynman diagram-
matics, graphic representation of the dynamics of the model, is given. Besides,
the ghost fields needed to render the model renormalizable are introduced.
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1.3 Productive System

In the case of productive systems, the study and analysis of the advantages
of the application of a geometric approach for the study of dynamics is in full
development. In previous works, and following the line of argument of several
authors in recent years, we explore the application of technique from the Field
Theory.

To model the dynamics of a productive system, different theoretical frame-
works have been defined and used from Physics, (M. Estola 2013 and M. Estola
and A.A. Dannenberg 2016), [19, 20, 21]. In these works, the dynamics of a
production are modeled after Newton’s second law and the application of the
Newtonian and Lagrangian formalisms. In these cases, the dynamics of the
neo-classical theory (state of static equilibrium) is studied, and it is shown that
this theory corresponds to the particular situation of the mentioned formalisms
(zero force).

Again, it is important to mention that in order to follow the reasoning and
the way of constructing exact arguments used by Physics, [22], the meanings of
the co-related magnitudes between Physics and Economics have a fundamental
weight for the development of consistent ideas.

Probably this set of concepts, definitions and procedures do not have the
same weight as in Physics, but they can be applied to a certain number of
models, or have a specific universe of application.

I. Fisher (2006, original work in 1892) planted in his doctoral thesis a vector
formulation for economics, first published work where the correspondences
between Physics and Economics, [23], are explicitly defined.

Then, and with a more general vision coming from the Field Theory, it
would be possible to model the dynamics of one productive system that can be
described from a trajectory, in coordinates (g, ¢), of a given configuration space.
By correctly defining the Lagrangian of the model, applying the techniques
from the Field Theory, it is possible to obtain the equations of motion.

It is essential to emphasize the importance of correctly defining the rela-
tionship between magnitudes, in this case the concepts of kinetic and potential
energies of the economic productive system, in consistency with the conceptu-
alizations coming from Physics, as generators of the dynamics of the system.

M. Estola et all (2013 and 2016) agree with I. Fisher (2006), that the
economic kinematics can be described according to the movement of a point
representative of the ”position” of an economic quantity in a coordinate system
(coordinates ¢ and ¢ of a configuration space), from:

Qilt) = Qilto) + [ ai(s) ds @)

The above equation represents the temporal evolution, which in the case
of Physics is obtained by means of the integral of the Lagrangian in time,
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called the functional action S. The action in Physics is an abstract concept,
and it contains all the dynamic information and the system interactions. The
temporal evolution takes place through a trajectory, in which the action has
an extreme (a minimum).

M. Estola, add in their works the idea of the existence of factors that resist
the changes of said economic quantities, modeling this inertia according to
Physics. Thus, it defines the "forces” and ”inertial masses” of the economic
magnitudes.

2 Theoretical Frameworks

We can start mentioning that in the geometrical picture, closed string as a
one-dimensional loop moving in a smooth target manifold Mg g Was sys-
tematically studied. Furthermore, every consistent 2D conformal field theory
corresponds to a possible string vacuum and it is a suitable starting point for
the string perturbation theory. So, it is possible to regard as a string vac-
uum only those consistent conformal theories which are generated by embed-
ding scalar functions X*(£%) from the world-sheet to that target space, where
XH e Mygrger and £* € World — Sheet. In the two-dimensional framework, the
embedding scalar functions X*(£) must be viewed as scalar fields coupled to
the 2D gravitational field with metric g, 5(§). The coupling is realized in such
a way that the classical action must be invariant under diffeomorphisms and
Weyl transformations, relating two different 2D conformal metrics. In the
case of superstrings, the two-dimensional action contains a convenient set of
left-handed and right-handed 2D-fermions.

We can say then that a consistent conformal theory implies that the classi-
cal conformal theory mantains the classical Virasoro algebra also at the quan-
tum level. This is possible by choosing the field content adequately, such that,
after quantization all the central charges a; and the coboundaries b; corre-
sponding to the different fields in the theory, sum up to zero. In summary,
these quantum conformal theories, given by well defined choices of the target
space, are suitable string vacuum.

Let‘s remember that the geometric structure underlying heterotic super-
string is that of N = 1, D = 2 conformal supergravity, i.e, the superspace
named (1,0). The geometry of this superspace of two bosonic coordinates z and
Z and a single Majorana-Weyl fermionic coordinate @, is described by a super-
vielbein (V*, V=€) and an SO(1, 1) connection w. The one-forms (V*, V=€)
provide a basis for the cotangent space. The one-forms V* and V'~ are the
inner directions and the one-form ¢ is the outer direction in the cotangent
space. Once the basis (V1, V™€) was given, it is possible to write the torsion
and the curvature of (1,0) superspace as follows:
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T+:dv++wAV+:;€Af (3)
T~ =dV- —w AV =0 (4)
To—d£+;wA£—TV+/\V (5)
R=dw=RVFT ANV —ir& ANV, (6)

where in the right hand side of the above equations are written the correspon-
dent parametrization of torsion and curvature consistent with the correspond-
ing Bianchi identities. In Eqgs. (5,6) the superfield 7(z, z, £) is the field strength
of the two-dimensional gravitino that provides a complete description of the
heterotic geometry, and R in Eq. (6), is the curvature that equals twice the
spinor derivative of 7.

Now it is possible to describe a classical 2D superconformal theory by the
Wess-Zumino-Witten action, which can be formally written as follows:

S= [ dCdet V(Q) L (V=€) ¢(Q)). (")

where the integral is defined over the Riemann surface >, which is a 2D real
manifold. The one-forms V* and £ are respectively the vielbein and the grav-
itino fields which are the supergravity background fields, and ¢*(¢) is a conve-
nient set of matter fields.

The geometric action of the (1,0) o model was proposed from several years
ago. In order to construct of such superconformal theory in the exterior canon-
ical picture, in Eq. (7) we take as matter fields ¢’(¢) the components of a
superfield ¢(z, z,0) which describes the injection:

9(z,2,0) : SWS—G (8)

where G is a simple group manifold. All the geometrical quantities of Mygrger =
G are constructed in terms of the left-invariant or right-invariant one-forms
(2 =g 'dg). This theory is called the Wess-Zumino-Witten model.

So, the Lie algebra-valued one-forms €2 and  are decomposed along a basis
ta of the Lie algebra associated to the group manifold G. It is obvious that
04 and Q4 satisfy the Maurer-Cartan equations.

And since the one-forms Q4 and Q4 depend on the superspace coordinates
(z, z, 0), they can be written along a complete superspace basis of one-forms:

Q= VTt VT At e (9)
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and similarly for Q4.
So, the starting point is to consider the following geometric action:

k
S@) = -1 . QY= MOA( QUL VT —Qu V) 420 Vo da A VT
41
F oML A f—é(i—i—a) FABC N g Ao € A VH

1
+ 01 VAV —|—2a)/ FABC QL A Qp A Q). (10)
Mg
The covariant differential of the two-dimensional spinor A is given by:

Vi M =DM +uwil As, (11)

where is well defined:

1
D)\Azd)\A+§w)\A. (12)

Another similar model studied from a geometric point of view was the o
model for superstrings of type II. In this case, the geometric canonical exterior
formalism on group manifold, for the heterotic supersymmetric (1,1) ¢ model
is constructed. This is done by starting from a classical 2D superconformal
theory described by the Wess-Zumino-Witten model, where the world-sheet
geometry is the (1,1) superspace. In this framework, the motion equations
of the dynamical field and the constraints are found and analyzed from the
geometric point of view. Again, it can be seen how the use of the FCE is more
adequate and simple because of its manifest covariance in all the steps. The
relationship between the form brackets defined in the FCE and the Poisson-
brackets is given. Later on, the Dirac-brackets are written by using the second
class constraints provided by the own formalism. Also, it can be seen the FCE
allows facilitates the canonical quantization of the model.

In this model, the geometric structure underlying in the superspace (1, 1)
with superconformal algebra of 2D, N = 2. This superalgebra contains:
translations V¢, conformal boosts K¢, Q-supersymetry 1, S-supersymetry o,
Lorentz rotations w® and dilatations W.

For the dynamics of the t-J model, we find the family of first-order La-
grangians, which map in the slave-fermion representation, written in terms
the Hubbard operators, which represent the real physical excitations, and ver-
ifies the graded algebra spl(2,1). The family of Lagrangians and the constraint
structure of the model will be determined by using the Faddeev-Jackiw sym-
plectic method.

By last, and following M. Estola’s line of argument, in the sense that the
dynamic of a production is modeled from Newton’s second law and the appli-
cation of Lagrangian and Newtonian formalisms, we presents and analyzes the
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possibility of applying more general techniques, typical of field theory such as
the FCE, to the study of the dynamic mentioned.

The FCE plays an important role, because of it is more simple and compact
structure can be used as an interesting geometrical formalism to derive and
analyze the equations of motions, and thus obtain the Hamiltonian density,
generator of the temporary evolutions of the generic functional.

3 Formalism for Gravity, Supergravity and Strings
Models

The FCE was constructed and applied to different models of gravity and su-
pergravity in diverse dimensions, as well as their coupling to matter super-
multiplets and to the Yang-Mills field [24, 25, 26, 27, 28, 29]. In general this
formalism permits to find and study constraints, equation of motion and all
the dynamical properties of such systems in a more simple way that following
the usual Lagrangian method. The FCE is covariant in all its steps because it
is constructed by using only operation of the exterior algebra. In all case the
gravity or supergravity fields are dynamics ones. The idea was to work by first
time with the FCE applied to the description of the heterotic supersymmetric
sigma model in which the supergravity field is a non-dynamical one.

If we will consider the o = —% case, which corresponds to choose a metric
connection for which the torsion is zero, in such case, the Lagrangian density
is written as follows:

L = (Y = AOA(Qay VI = Qu V) + 20V A, A VT

K
&
MO A CHU QA VTAVT] (13)

_|_

In the Lagrangian density (13) the auxiliary two O-forms fields Qﬁ, 04
are non-geometrical objects and are introduced with the purpose of obtaining
rheonomic equations of motion, i.e., equations compatible with the Bianchi
identities as it is required by the group manifold approach [24, 25].

In order to obtain the equation of motion, instead of the WZW field ¢
contained in the one-form field Q4, we can use as dynamical variable the
tangent variation.

Therefore, Eq. (13) is our starting point in order to construct the first-order
FCE. We define the canonical conjugate momenta to each one of the dynamical
field variables u* = (y*, M, V*, V—, (, Qﬂ, 04) for the compound index
Y. By means of the functional variation of the Lagrangian with respect to the
"velocities” du*, the canonical conjugate moments are defined by:
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o
5(dpe”)
In the FCE, it is necessary to define a suitable operation involving forms,
capable of replacing the role of the classical Poisson brackets. Therefore, the

graded form-brackets operation between pairs of canonical variables is defined
and it is given by:

(14)

(ME ’ HA) _ (_1>a+1+|A| 5{% : (15)

where a and | A | are respectively the degree and the Fermi grading of the
form p*.

In the FCE, the conserved first-class dynamical quantity describing the
dynamics of the system is the extended Hamiltonian Hr, and it is the bosonic
two-form defined by:

Hp = Hegn + A= A &y, (16)

where the Lagrange multipliers A¥ can be unambiguously determined. When
the fundamental equation of motion in the FCE is taken into account, it is
possible to write the Hamiltonian equations for pairs of canonical variables:

du® = (u*, Hr) (17)

dit* = (11* | Hy) (18)

From Eq. (16) and by using Eq. (15) the following general result is ob-
tained:

A® = du* . (19)

In Eq. (15) the canonical Hamiltonian is given by: H., = du* A s, — L,
and explicitly by:

Hen = dy* A Pa+d\* A Qa+dVT AT +dV- A T
+ dC A T +dU™ A Pia+dU P APa—L (20)

3.1 Equations of motion

The field equations of motion in the FCE are given by the consistency condi-
tions on the primary constraints, i.e:

dd* = (&>, Hy) =~ 0. (21)
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As it was commented above the vielbein and the gravitino are not dynami-
cal fields in 2D, therefore the motion equation for the supergravity background
fields V.V~ and ¢ will be not considered. The supergravity background fields
play the role of Lagrange multipliers associated to the primary constraints of
the theory, that is the superstress-energy tensor and the supercurrent. In fact,
the superstress-energy tensor and the supercurrent one-forms are respectively
defined by making the variation of the action (10) with respect to the super-
vielbein (V*, V= (). As it is known in the classical theory these quantities
are weakly zero ones. The variables 4 and Q# are introduced to enforce the
rheonomic. From the quantum point of view they are used to construct the
BRST-charge parametrization.

Therefore, the main equations are those for the fields y* and A4 which
respectively read:

doM = (oM Hy)
(PM | Hop) + A A (M, Op) +38 A (M, Up)

+ A A (@Y ) F AL A (@Y )+ A (@Y @)
+ AL A (@Y, e+ A% A (@M, 1)
+ weakly zero terms =0, (22)

dvM = (O™ Hyp)
= (QM, Hupn) +dy® A (UM @) —dXP A (UM | Up)
+ o dVE A (Y o) HdVT A (B o) HdC A (BT )
+ dt A (UM e 4t A (I 62)
+ weakly zero terms =0 . (23)

After considering the explicit expressions of the form-brackets between con-
straints, and by replacing, we have:
doM = — (dII* — fAPC QP ATIO + DAY A4+ M TP
1
+ fAECQENT A (= 2ifENE DT A VT4 AN XD CA ¢
. Z-fABC fCDE OB AP \E A V*)
+ weakly zero terms =0, (24)

AU = — (i A AVTHC AT ¢ A QX A Q)
+ weakly zero terms =0 . (25)
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Having the same structure they can be decomposed into four independent
sectors corresponding to the inner-inner direction V* A V™~ the inter-outer
directions VT A ¢ and V= A ( and the outer-outer direction ¢ A (.

The first step is to consider the Maurer-Cartan two-form equation and
the one-forms decomposed along the supergravity background one-form fields
(VEV0).

By straightforward calculation it can be shown: i) that the coefficients
of the components V* A (, V- A (and ¢ A ( cancel automatically
when the rheonomic parametrization is introduced. On the other hand, the
cancelation of the component V't A V™ gives rise to the following condition:
D_ QY4+ Dy QA — 7 M = 2ifABC\B D_ \C — g fABC fODE OB \D \E —
ii) that the coefficients of the components V' A ¢, V™ A (and { A ( cancel
automatically, while the cancelation of the component V* A V™~ gives rise
to the following condition: D_ A* — 1 fABY A\B QY = 0. iii) considering the
different projections for the Maurer-Cartan equation, the following conditions
are found; the coefficient cancelation of the components V' A Cand V~ A (,
the cancelation of the coefficient of V™ A V'~ gives rise to the Bianchi identity,
the coefficient of ( A ( cancel automatically.

Therefore, the conclusion is that the motion field equations (23) and (24)
for the fields y* and A4, are reduced to the two differential equations, in the
points i) and ii), and the remaining conditions are all geometrical ones.

4 Formalism for the t-J Model

For this model, we will start summarizing the main definitions as the starting
point for our perturbative formalism.

It is important mention that the Faddeev-Jackiw symplectic quantization
method (FJ) is formulated on actions only containing first order time deriva-
tives, whereby we consider the following first order Lagrangian written in terms
of the Hubbard X -variables, X-variables:

L= (X)X~ VO(X) (26)

where the coefficients a;os are unknown and they are determined in such a
way that a graded algebra (1) for the Hubbard X-operators must be verified.
Is important to remark that at this level the X-variables must be treated as
classical fields.

In the Faddeev-Jackiw language the symplectic potential V(©) (X)) is defined
by:

VO(X) = H(X) 4+ \Q, , (27)
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where \* are appropriate Lagrange multipliers for the constraints €2,,.
Therefore, the constraints are given by:

oV O (X)
Qa - W ) (28)

In equation (26) H(X) is the usual t-J Hamiltonian:

1
HX) = Xty XOXO 4 05 Iy (XX = XX =i Y X0 (29)

4,5,0 j

where a term depending on the chemical potential p was added.

In equation (28) t;; and J;; are respectively the hopping and the effective
exchange parameters between sites ¢ and j. The indices «, § take the values
0 (empty state) or spin index o = 4+ (up and down states, respectively). The
five Hubbard X-variables X% and X% are boson-like and the four Hubbard
X-variables X°° and X% are fermion-like. Once the FJ symplectic algorithm,
[15], is implemented on the first-order Lagrangian (25), a particular solution
of the differential equations bring the following values for the coefficients a,gs
and the constraints €2,.

Taking into account that there are only four bosonic fields, only two bosonic
constraints are possible (discussion in [13]), and the fermionic constraints turn
out to be four. Only two of the fermionic constraints must be considered as
independent. Therefore, in the t-J model under consideration, there are two
bosonic constraints and two fermionic constraints.

The completeness condition is obtained as one of the bosonic constraints
in consequence p must be identified with the hole density. We remember that
such a condition has an important physical meaning, and it must be imposed
to avoid at quantum level the configuration with double occupancy at each
site. So, we must emphasize that by means of our approach the completeness
condition appears as necessary by consistency.

Finally, and without loosing generality, we choose a = —1. So, we can
write the Lagrangian (25) as:

(2 =) —4dpi —

LX,X) = iy

7

CITGeR ) -nw.

1,0

(X;*Xj* _ Xj*X;*)

Which, and after some algebraic calculations for the coefficients, leads to
the Fuclidean Lagrangian Lff s> argument of the path integral that will give us
the diagrammatics and Feynman rules of the model (dynamics of the model).
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In this case a particular solution for the coefficients of the Lagrangian (25)
leads to the following Euclidean Lagrangian:

SiIS'ZQ 12511

LF = ~ 5. : s 15, Z\IJW\I/* +Hi g, (31)
and the set of second-class constraints:
O=S;+5+5;—-5=0, (32)
Ep =W (S +1iSy) — Vi (s+55) =0, (33)
Eo=V_(5 —iS) -V i(s+S53)=0. (34)

The correlation generating functional is obtained by integrating the fermionic
constraints (32) and (33) and by using the integral representation for the delta
function on the non-linear bosonic constraints (31). Therefore, the partition
function writes:

1
z = / DS;1 DSz DSy DV DVE D, (sdetMagp)?

exp < /dTLeff )), (35)

where sdet M 4p is the superdeterminant of the symplectic supermatrix M 4z,
and L% (S, W) is defined by

SiaSi1 — S S

i i
Lg”f<57‘1’) = _%(1—0)2 s+ S _Z)‘i(Si21+Si22+Si23_82)
1 . .
— s Y g (B )+ H(S, ). (36)

The first term in (35) shows the non-polynomial structure of the kinetic
part of the Lagrangian. In (35) the total Hamiltonian H is defined by:

1
H= Ht_J - QSIUZ s+ g \I[;‘k_\l]i— s (37)
i0 i3

where the Hamiltonian H;_; for the t — J model is given by:

Sil - ZS@Q
s+ Sig

B 832 Z JZJ p])[SﬂSJl + SzQSjQ + Sl3S]3 ] ) (38)

Sjl + iSjQ

Hy_,; Ztmqu,\lf* 1+ ( ST 5.
J

) )
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being J;; > 0 for a ferromagnetic state and J;; < 0 for an antiferromagnetic
one.

Finally and summarizing, to describe the dynamics of the t-J model a first-
order Lagrangian in terms of the Hubbard operators is define. In this way,
the Hubbard operators assume the role of dynamic variables. This Lagrangian
correspond to a dynamical second-class constrained system. Then, and conse-
quently, the quantization is carried out by using the path-integral formalism.
In this context the introduction of proper ghost fields is needed to render the
model renormalizable. Later, the perturbative Lagrangian formalism is devel-
oped and it is shown how propagators and vertices, descriptors of the dynamic
of the model, can be renormalized to each order.

5 Formalism for a Productive System Model

In the first order of this geometrical formalism the dynamics is described by the
1-form fields ¢* = (V*,w®), where the index A = (a, ab). The fields V* and
w® play the role of the coordinates of a configuration space. So, V¢ represents
a given quantity, and w® is a field of geometric origin (in gravity, the dreibein
and the Lorentz spin connection, respectively). The 2-forms ¢ = dg play
the role of velocities. The curvature 2-forms corresponding to the above fields
are called R4 = (R, R®), and are defined by:

RY = dg* - ;CABC ¢“ Ng", (39)

where the graded structure constant 4, and the constant symmetric Killing
metric y4p are related by the equation:

Capc =vapCc . (40)

The explicit expressions for the curvatures are written:

R =dV* +w™ AV, (41)
RY® = dw™ +w™ Aw, . (42)

5.1 Lagrangian density £

The action in a three dimensional space (two spacial-one temporal) is defined
by means of a Lagrangian density (3-form) given by:

2
L = R® ANV ey + dw™ A wyy — gw“b A wy € A Weq (43)
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where the usual Einstein-Hilbert term play the role of the "mass” term. The
other terms are viewed as the "kinetic” terms, in higher derivative (second
time derivative). An equivalent Lagrangian density is:

L = dV® A wepe + dw™ A wap
2
—g wab N Wy, A Wea +Wad A Wy b A chabc ) (44)

that differs of Eq. (34) in a total derivative. The canonical momenta (1-
forms) 74 conjugate to the 1-forms field variables ¢* obtained by the functional
variation of the Lagrangian density (35) with respect to the 2-forms velocities
dg? = ¢* are given by:

oL
— 45
™ o )
Therefore:
Tg = wbc Eabe 5 (46)
Tab — Wgab - (47)

The set of primary constraints can be obtained from the Lagrangian density
and they are the relationship between the field and momentum variables not
depending on the velocities:

By =7y —wempe =0, (48)

q)ab = Tap — Wap ~ 0 ) (49)

where the symbol ~ implies weakly zero.

It is necessary to define a suitable operation involving forms with the help
of which the Hamiltonian equation of motion may be written. As it was shown
in [24, 25] the Poisson brackets yields more information than the form brackets.
They can be related by means of an integral relationship.

Starting from the Lagrangian (35) the canonical Hamiltonian can be de-
fined:

Hcan = qu /\7TA_£:

2
—w A Wyt A Ve + gwab A wy €A Weq - (50)

Therefore, the total Hamiltonian can be defined as follows [25]:
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%T - Hcan+AA A CI)A:
2
—w A wy YA Veepe + gwab A wy €A Wea
+A" A (7ra — Wb €abc> +AP A (T — wap ) (51)
where A4 = (A“, A“b) are the Lagrange multipliers.

Now, it is necessary to introduce the fundamental equation of motion in
the formalims, in analogy to classical mechanics, as was mentioned in the
introduction, the following equation involving the form-bracket is introduced:

dA= (A, Hr)+0A, (52)
where A = (g, m) is a generic polynomial in the canonical variables ¢ and
74 The operator O acts nontrivially on external fields only. Therefore, for the
canonical variables:

Ogt = 0ma =0, (53)

and also for constraints:

0,4 =0. (54)

Considering the equation (43) we can write the following Hamiltonian equa-
tions:

qu = (qA ) HT) ) (55)
and taking into account the expression (42) for Hr, by straightforward calcu-
lation we find the following general results:

A A= dq A - (56)

It is also necessary to prove whether there are secondary constraints in the
theory. For this purpose, we must impose the consistency condition on the
primary constraints. We must use (43) for ®4 and impose the condition:

d(I)A:((I)A, HT) %0, (57)

where (45) was used.
Computing explicitly the form-bracket appearing in (48), we arrive to the
general equation:

d® 4 = — [equation of motion| + (@A ) AB) A Ap . (58)
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As (CIDA : AB) A ®p is a weakly zero trem, (49) implies the lack of sec-
ondary constraints in the FCE. Moreover, the equation (49) guarantees that
the Hamiltonian defined in (42) is a first class dynamical quantity. On the
other hand, by using (48) and after lengthy algebraic manipulations, we find:

APy = —R" eape + (T, A*) A A, (59)

Aoy = =2 Rap — R £ape + (P, A*) A Ay . (60)

These results and properties can be obtained from the FCE in a general
form [24].

6 Conclusions

We conclude that due to it is intrinsic geometrical language, the FCE can be
used as an interesting formal resource to understand the structure and the
dynamics of different models, being able to analyze field theories such as: su-
pergravity in diverse dimensions, the heterotic supersymmetric sigma model,
which describes type II superstring, t-J model and a productive system. The
first remark is that the FCE is not a proper canonical formalism because it does
not propagate data defined on an initial surface as it is required by a standard
mechanical system. However, as it can be seen from it is construction, that
the FCE is a powerful method at classical level, due to the covariance in all its
steps this formalism allows to find the equations of motion and the constraints
in a very simple way without introducing complicate algebraic manipulations.
Since all the primary constraints coming from the FCE are second-class ones,
the Dirac brackets are easily defined by projecting these constraints on the
surface . The Hamiltonian of the system is treated as usual according to the
Dirac prescriptions. The total Hamiltonian coming from the FCE (Egs. 15,
37 and 50), it is evaluated as the generator of time evolution. The primary
constraint obtained in the FCE also plays an important role in the construc-
tion of the proper Hamiltonian. Precisely, it is given in terms of the first-class
constraints which close the constraint algebra. Therefore, all the Hamiltonian
gauge symmetries remain determined and the apparent gauge degrees of free-
dom can be unambiguously removed leaving only the physical ones. When the
model is considered from the quantum point of view this last step is necessary.

In the case of t-J model, the study of the dynamics was done by applying
the Faddeev-Jackiw formalism, which allows a general treatment for systems
containing the Hubbard operators as dynamical variables. A family of classical
first-order Lagrangians describing these dynamical systems is found. Also, and
in the framework of the path-integral formalism, it is possible to quantify the
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model, analyze the generating functional describing the dynamics of the t-J
model and build the standard Feynman rules, a representation of the dynamics.
In the case of a productive economic system, have applied techniques of
field theory following the approach taken by other authors in this area. The
FCE we present for the analysis of the dynamics of the model is, from the point
of view of the analytical mathematics, wider and more general. It includes the
law of Euler Lagrange, the Lagrangian and Newtonian formalisms studied by
others. With the right choice of meaning and correlation between the physical
and economic variables, this formalism, coming from the field theory would
give the possibility to study the model dynamics more general and complex.

Acknowledgements. In memorian of my Father, who taught me all
Physics that scarcely I was able to learn.
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