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Abstract

The Green’s function of the nonrelativistic Coulomb problem is de-
rived by polar coordinates. The radial part contains the product of the
two Whittaker functions M and W; the result is consistent with that
of Hostler (1962) who used Lambert coordinates. The function W con-
tains a logarithmic singularity which is related to the continuous energy
spectrum. When one goes for numbers, one has to define the physi-
cally correct branch of the logarithm, ln(z), with z = −2i k r1, where
k is related to the energy parameter E = k2/2 and r1 is a radial co-
ordinate. The built-in Mathematica function W of Wolfram Research
renders the principal value of the logarithm. However, if k is varied in
the complex plane, the first singularity, predicted by the Mathematica
algorithm for W, appears on the negative imaginary axes which would
lead to a negative continuous energy spectrum. By an elementary anal-
ysis, it is found that with the complex parameter k = |k| exp[iϕ], the
logarithm of z should be extended to two sheets of the Riemann surface.
We introduce the correction term to the function W of Mathematica in
analytical form, such that the singularities of the Green function give
the physically correct energy spectrum.

PACS: 02.70.Wz, 03.65.-w

1 Introduction

In an attempt to determine quantum mechanically the time evolution of rec-
tilinear Kepler orbits [17], we studied the method of Green’s function (GF)
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and checked existing formulas numerically. For this purpose, Mathematica
[21] offers useful tools: both, the two Whittaker functions M and W, and the
confluent hypergeometric function are implemented. In addition, asymptotic
series of these functions can be obtained by key stroke.

After relatively involved integral representations of the GF were achieved,
e.g. by Schwinger [18] or bei Meixner [14], it was kind of a sensation when
Hostler (1962) derived the Coulomb GF in a compact closed form, basically in
terms of a product of the two Whittaker functions [10, 11]. Based on Lambert’s
theorem [7, 15, 2, 13, 16], Hostler uses a minimal set of two coordinates, namely,
x = r1 + r2 + r12 and y = r1 + r2− r12 with r12 = |r1− r2|. From Hostler’s GF,
an analytic form of the propagator was derived by Blinder [3]; for special cases
of the propagator see, e.g. [12], A different approach to obtain the GF was
undertaken by Hameka [8, 9], but remained uncompleted, as to our opinion.
Hameka used polar coordinates and Meixner’s [14] method which amounts to
sum over the eigenstates of the spectral representation of the GF.

In the present article, we partly adopt Hameka’s concept but apply Hostler’s
method which consists in solving the Coulomb differential equation for the GF
and in taking into account the proper physical boundary conditions. The
configuration space is now three- rather than two-dimensional, with the co-
ordinates r1, r2, and r̂1 · r̂2. We, nevertheless, see some advantages of the
GF found: When G is represented by spherical harmonics, the radial part Gl

(for angular momentum quantum number l), factorizes with respect to the
radial coordinates r1 and r2; the radial part contains the product of the two
Whittaker functions, but has not to be differentiated as in Hostler’s work;
our GF may also be convenient, if one has to couple with initial, low angular
momentum wave packets.

The GF depends parametrically on a complex energy parameter E, which
in dimensionless form is set equal to k2/2. As a function of k, the singularities
of the GF give the energy spectrum of the Hamiltonian: The poles at kn = i /n,
n = l+ 1, l+ 2, . . . correspond to the discrete spectrum, whereas a branch cut
along the negative k axes is related with the continuous positive eigenvalues.
In examining the singular structure of the GF found, one immediately observes
the Gamma function, as a pre-factor, which produces the poles for the discrete
spectrum. The continuous spectrum, on the other hand, is hidden in the
non-analytic part of the Whittaker function Wκ,ν(z), where κ = i /k, ν =
(2l + 1)/2, and z = −2i k r1. To verify the location of the branch cut, we
used the Mathematica function ”WhittakerW[i /k, 1/2, z]” and produced plots
for k = |k| exp[iϕ] as a function of the phase ϕ. Surprisingly, the branch cut
had to be located along the negative imaginary axes of k. As far as we know,
the Whittaker function W of Mathematica is implemented by the integral
representation given in Section 16 · 12 of Whittaker/Watson [19], for details of
the implementation in Mathematica, see [20].
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To analyze the discrepancy, the work of Buchholz [4] was most useful: The
formula (25a) in §2 explicitly reveals the source of the nonanalyticity of W :
the multivalued logarithm ln(z) ≡ ln(−2i k r1), which Mathematica renders by
the principal value, ln(z) = ln(|z|) + iφ with −π < φ ≤ π. When k is varied in
the complex plane, one needs a further sheet of the Riemann surface of ln(z)
to predict the physical energy spectrum. The main conclusions of the article
are illustrated by Fig.1 and Fig.2.

In Sec. II., we derive the 3-D Coulomb Green’s function by using polar
coordinates. In Sec. III., the branch cut of the Whittaker function W is
analyzed, followed by Sec. Conclusion. Appendix A gives the definition of the
Whittaker functions together with an explicit series representation of W from
[4]. In Appendix B, numerical checks are presented on the Wronskian of the
two Whittaker functions. The checks also indicate the high precision of the
Mathematica algorithms for rendering numbers for M and W. In Appendix C,
we comment on the different definitions of the Meixner function F2.

2 The Green’s function in polar coordinates

We are interested in the time evolution of a wave packet Ψ0 from t = 0 to
t > 0. To this end, we will apply the method of Green functions as follows

ψ(r, t) = exp [−(i /~)H t] Ψ0 = exp [−(i /~)H t]
∑
ν

|ψν〉〈ψ∗ν |Ψ0, (1)

where we inserted the unit operator in terms of the complete set of eigenfunc-
tions ψν of H with the sum comprising both the discrete and the continuous
spectrum. We introduce atomic units a0, ε0, and T0 for length, energy, and
time, respectively

a0 = ~2/(mα), ε0 = α/a0, T0 = ~/ε0 = ~3/(mα2); α > 0. (2)

The polar coordinates are defined by r > 0, 0 < θ < π, and 0 ≤ ϕ < 2π. We
write, for the case of an attractive (1/r) potential,

H = − ~2

2m
∆− α

r
→ H

ε0
= −1

2

[
∂2

∂r2
+

2

r

∂

∂r
−
(
L

~

)2
1

r2

]
− 1

r
, α > 0, (3)

where L denotes the angular momentum operator and r is in units of a0. From
the eigenfunctions of ψν , we separate off the angle dependence by means of the
normalized spherical harmonics Yl,m,

ψν = fµ,l(r)Yl,m(θ, φ), ν = {µ, l,m}, (4)
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with

(L/~)2 Ylm = l(l+1)Ylm, l = 0, 1, . . . ; m = −l, (−l+1), . . . (l−1), l. (5)

Using the scaled variables µ2/2 = Eµ/ε0 and τ = t/T0, we write (1) in terms
of the propagator K:

K(r, r′, τ) =
∑
ν

exp[−i (µ2/2)τ ]ψν(r)ψ
∗
ν(r
′)Θ(τ), (6)

where Θ is the Heaviside function with Θ(t) = 1 if τ > 0 and Θ(t) = 0 if
τ < 0:

ψ(r, τ) =

∫
d3r′K(r, r′, τ)Ψ0(r

′) (7)

The eigenvalue µ is real in the continuous spectrum and in the discrete part
µ = i /n, n = 1, 2. . . . with n ≥ l + 1. Eventually, we go to the time Fourier
transformed function ψE(r)

ψE(r) =

∫
dτ exp[iE τ ]ψ(r, τ), ψ(r, τ) =

1

2π

∫
dE exp[−iE τ ]ψE(r). (8)

In the first equation of (8), we insert ψ(r, τ) from (6) and (7), replace E by
k2/2, and take into account that ψE is analytic in the upper complex E plane,
so that E is defined with a positive imaginary part in the τ integral. We obtain

ψE(r) = 2 i

∫
d3r′G(r, r′; k)Ψ0(r

′), (9)

where, for Im(k2) > 0, the Green’s function is defined by

G(r, r′; k) =
1

2i

∫ ∞
0

dτ exp[i (k2/2)τ ]K(r, r′, τ) =
∑
ν

ψν(r)ψ
∗
ν(r
′)

k2 − µ2
. (10)

We remark that elsewhere, e.g. in [6], the term Green’s function refers to the
propagator K which also is called kernel.

From (10), it is seen that, due to the completeness of the functions ψν ,

HkG(r, r′; k) = δ(r− r′), Hk = k2 − 2(H/ε0), (11)

which is true independently whether Hk acts on r or r′. By the product form
(4), G is written as follows:

G(r, r′; k) =
∑

l=0,1,2,...

Gl(r, r
′; k)

l∑
m=−l

Yl,m(θ, φ)Y ∗l,m(θ′, φ′). (12)

The form (12) implies the rotation symmetry of the problem.
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Hameka’s work [8] suggests the following ansatz:

Gl(r, r
′; k) = Fl(r; k)Kl(r

′; k)Θ(r − r′) + Fl(r
′; k)Kl(r; k)Θ(r′ − r). (13)

Both Fl(r) and Kl(r) obey the Coulomb differential equation

Hk(l) y(r) = 0, Hk(l) = k2 +
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
+

2

r
, Im(k2) > 0, (14)

where the latter condition implies that k2/2 is not an eigenvalue of the Hamil-
tonian H. The solutions of (14) are written as a linear combination of the
Whittaker functions M and W , for definition see Appendix A,

y(r) =
1

r
[cMMκ,ν(z) + cWWκ,ν(z)] , κ =

i

k
, ν =

2l + 1

2
, z = −2i kr. (15)

Clearly, both Fl and Kl, can be expressed by means of a suitable linear com-
bination of M and W .

Restrictions result from boundary conditions for r → 0 and r →∞. Near
the origin, one has the following behavior of the Whittaker functions, see Tab.1
of [4],

Mκ,(2l+1)/2(z) = const.zl+1 +O(zl+2), l = 0, 1, 2, . . . (16)

Wκ,(2l+1)/2(z) = const.z−l +Ol, O0 = O (z ln(z)) ,

Ol = O(z−l+1), l ≥ 1. (17)

For large |z|, the function W behaves asymptotically simpler than M . In the
given case with z = i ζ and κ = i τ , where ζ is real, one finds in §7 of [4]

Wκ,(2l+1)/2(z) = zκ exp(−z/2) [1 +O(1/z)] , |arg(z)| < 3π/2, (18)

Mκ,(2l+1)/2(z) = ac cos[ϕ(ζ)] [1 +O(1/ζ)]− as sin[ϕ(ζ)] [1 +O(1/ζ)] , (19)

ϕ(ζ) = −τ ln(|ζ|) + ζ/2 + δ + π/2(l + 1) sign(ζ), z = i ζ, κ = i τ.

For the detailed definition of the constants ac, as, and δ, we refer to [4]. It is
inferred that M asymptotically oscillates for large r provided k is real, whereas
there is a runaway if k is complex both for positive and negative imaginary
parts. This is exemplarily confirmed when plots are produced by the com-
puting system Mathematica [21], where the Whittaker functions belong to the
built-in commands. On the other hand, W decays exponentially for large r if
k has a positive imaginary part.

Now, let us consider (13) with respect to the boundary conditions stated.
If r > r′, then the function Kl(r

′) should behave properly near r′ = 0 which
implies that Kl must not contain the function W :

Kl(r; k) = cKMκ,ν(z)/r, κ = i /k, ν = (2l + 1)/2, z = −2i kr. (20)
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On the other hand, if r < r′, then the proper asymptotic behavior of Fl(r
′) for

r′ →∞ requires that Fl cannot depend on M , in particular, since we assume
a positive, non zero, imaginary part of k:

Fl(r
′; k) = cFWκ,ν(z

′)/r′, κ = i /k, ν = (2l + 1)/2, z′ = −2i kr′. (21)

We now apply the operator Hk(l) to Gl(r, r
′; k) and take into account that

both Fl and Kl are solutions of the differential equation (14). We also use the
following properties of the Dirac delta function,

∂rΘ(r− r′) = −∂rΘ(r′− r) = δ(r− r′), B(z)∂zδ(z) = − [∂zB(z)] δ(z), (22)

to obtain

Hk(l)Gl(r, r
′; k) =W [Kl(r), Fl(r)] δ(r − r′) =

cKcF
r2

δ(r − r′)WM,W , (23)

where W denotes the Wronskian

WM,W = M
dW

dr
−W dM

dr
= (−2i k)

[
Mκ,ν(z)

dWκ,ν(z)

dz
−Wκ,ν(z)

dMκ,ν(z)

dz

]
= (−2i k)(−1)(2l + 1)!/Γ(1 + l − i /k). (24)

The latter result is based on the Wronskian (33) on page 25 in [4], where one
has to take care of the different definition of M :

MBuch
κ,ν = Mκ,ν/Γ(1 + 2ν) = Mκ,ν/(2l + 1)!, ν = (2l + 1)/2. (25)

We checked (25) numerically in Appendix B.
In order that

Hk(l)Gl(r, r
′; k) = (1/r2)δ(r − r′), (26)

we have to set

cKcF = −i Γ(1 + l − i /k)

2k(2l + 1)!
. (27)

By (12) and the completeness of the spherical harmonics, we arrive at the
defining relation (11) of G, namely,

HkG(r, r′; k) =
∑

l=0,1,2,...

[Hk(l)Gl(r, r
′; k)]

l∑
m=−l

Yl,m(θ, φ)Y ∗l,m(θ′, φ′)

=
1

r2 sin(θ)
δ(r − r′)δ(θ − θ′)δ(ϕ− ϕ′), (28)

and

Gl(r, r
′; k) = −i Γ(1 + l − κ)

2k(2l + 1)!
[Wκ,ν(−2i k r)/r] [Mκ,ν(−2i k r′)/r′] ,

r > r′, κ = i /k, ν = (2l + 1)/2; (29)
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If r < r′, then r and r′ have to be interchanged.

In the special case r′ = 0, we infer from (12), (20), (21), and (A4)

Gl(r, 0; k) = G0(r, 0; k)δl,0 = cKcF [Wκ,ν(−2i kr)/r] [Mκ,ν(−2i kr′)/r′]r′→0

= −2 i k cKcF δl,0Wκ,1/2(−2i kr)/r. (30)

In (30), we used the relation [Mκ,ν(−2i kr′)/r′]r′→0 = −2i k δl,0 with ν = (2l +
1)/2 → 1/2. Inserting the coefficients cKcF for l = 0 and taking into account
the normalization of the spherical harmonic |Y0|2 = 1/(4π), we find

G(r, 0, k) = G0(r, 0; k)/(4π) = −Γ(1− κ)

4πr
Wκ,1/2(−2i kr), κ = i /k, (31)

which agrees with Hostler’s result Eq.(9) in [11], up to the different notation
κ→ i ν.

Asymptotically, for k r � 1, we infer from (18) using ln(−i ) = −i π/2,

G(r, 0, k)→ −exp {i [k r + (1/k) ln(2k r)]}
4πr

exp[
π

2k
] Γ(1− i /k), k r � 1.

(32)

3 The singularities of the Green’s function found

The Green’s function (29) exhibits simple poles through the factor Γ(1+ l−κ),
when the argument of Γ is a negative integer or zero, Γ(−j) = ∞ for j =
0, 1, . . . . With κ = i /k, the corresponding k values are

kj = i /(1 + l + j), or kn = i /n, n = l + 1, l + 2, . . . , (33)

and give rise to the well known discrete energy spectrum En = −1/(2n2). The
continuous spectrum with E > 0 should be related to a branch cut along the
negative real axis of k.

In order to detect the branch cut in the Whittaker function W (the func-
tion M is regular in k), we performed numerical experiments by setting k =
|k| exp[iϕ] and by plotting both the real and the imaginary part of the complex
parameter k as a function of 0 ≤ ϕ ≤ 2π. We used the built-in Mathemat-
ica function ”WhittakerW[...]”. Surprisingly, we observed the discontinuity at
ϕ = 3π/2, rather than at ϕ = π. A branch cut along the imaginary axes would
predict that the continuous spectrum is given by the negative energy values
E < 0.

The origin of the discrepancy can be located in the logarithm term, ln(z),
which explicitly appears in the definition (A6) for W , as defined by Buchholz
[4]. Mathematica renders the principal value of

ln(z) ≡ ln(|z| exp(iφ)) = ln(|z|) + iφ with − π < φ ≤ π. (34)
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Im[W]
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3

Figure 1: Imaginary part of the Whittaker functionW versus the phase ϕ of the
energy parameter k = |k| exp[iϕ]: red and black lines refer to the Mathematica
built-in function WhittakerW[i /k, 1/2,−2i k r] and to the corrected version,
respectively. The latter takes care of the physically proper Riemann sheet of
ln(−2i k r). When k is varied in the complex k plane, starting from ϕ = 0,
then in the ”red” case the first singularity is met at ϕ = 3π/2 and implies the
branch cut along the negative imaginary axes of k with the consequence that
the Green’s function would predict a negative continuous energy spectrum.
When the Mathematica function W is corrected according to (37), then the
first singularity occurs at ϕ = π, and so the Green function predicts the
physical, positive, continuous energy spectrum. For the help of the reader, the
”black” curve is artificially shifted by a small constant amount. Strictly, the
two curves coincide except in the interval π ≤ ϕ ≤ 3π/2. The parameters
chosen for the plots are l = 0, r = 1, and |k| = 1.1.

Now, when

z = −2i k r = −2i |k| r exp(iϕ) = 2|k| r exp[i (ϕ− π/2)], (35)

then the standard algorithm for rendering ln(z) projects the k phase into the
interval −π/2 < ϕ ≤ 3π/2 and implies to set the branch cut on the imaginary
k axes. In order to obtain the physically correct Riemann sheet of W in the
whole complex k plane, we represent ln(z) as

ln(z) = ln(−2i r) + ln(k) (36)

and, by (A6), with ν = (2l + 1)/2,

WhittakerW[κ, ν, z] → WhittakerW[κ, ν, z] +
1

Γ(−l − κ)

Mκ,ν

(2l + 1)!
∆W,

∆W = − ln(z) + ln(−2i r) + ln(k). (37)

As a function of the k-phase ϕ, Mathematica determines each of the three
terms of ∆W modulo 2π with offset at −π. The result is

∆W (|k| exp[iϕ]) = −2πi , if π < ϕ < 3π/2, else ∆W = 0. (38)
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→ φ

Re[Wcorr]

Re[W]
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Figure 2: Real part of the Whittaker function W versus the phase ϕ of the
energy parameter k, in full analogy to Fig.1.

For illustration, see Fig.1 and Fig.2. Since ∆W does not depend on the quan-
tum number l, the special case l = 0 is sufficient for demonstration.

4 Conclusion

In order that the Green’s function predicts the correct physical energy spec-
trum of the Coulomb Hamiltonian, the multivalued logarithmic term in the
Whittaker function W cannot be restricted to the principal value but has to
be extended to a further sheet of the Riemann surface. The correction to
be considered is restricted to the third quadrant of the complex parameter
k = |k| exp[iϕ], i.e. to the phase interval π < ϕ < 3π/2. As a consequence,
the asymptotic behavior of G in the upper complex k plane with Im(k) > 0, is
still fully determined by the Whittaker function W, without admixture of M,
and the Mathematica algorithm for W has not to be modified if Im(k) > 0.

Acknowledgements: The author expresses his gratitude to Jürgen Parisi
for his support and constant encouragement, and, not at least, for the critical
reading of the manuscript.

A The Whittaker functions

The Coulomb differential equation (14),

Hky(r) = 0 with Hk =
∂2

∂r2
+

2

r

∂

∂r
− l(l + 1)

r2
+

2

r
+ k2, (A1)

is transformed into the Whittaker standard form [19],

∂2w

∂z2
+

[
−1

4
+
κ

z
− l(l + 1)

z2

]
w(z) = 0, (A2)
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which is achieved by the substitutions r → z and y(r)→ w(z) with

y(r) = (1/r)w(z), z = −2i kr, κ = i /k. (A3)

In the case of a repellent Coulomb potential, one has to set κ = −i /k, keeping
z = −2i kr. Two independent solutions of (A2) are the Whittaker functions
Mκ,ν(z) and Wκ,ν(z), ν = (2l+ 1)/2, where M is connected with the confluent
hypergeometric function Φ as

Mκ,(2l+1)/2(z) = zl+1 exp[−z/2] Φ (l + 1− κ, 2 + 2l, z) , κ = i /k. (A4)

In general, W can be defined in terms of M by

Wκ,ν =
1

sin(2πν)
[Mκ,ν −Mκ,−ν ] . (A5)

However, by the sine function in the denominator, the case needed in the
Coulomb problem, where ν is half of an uneven integer, is exceptional and
needs either taking limits with the aid of the L’Hospital rule [4] or special
contour integration [14].

According to Eqs.(24a) and (25a) in §2 of [4], where we replace the index
µ/2 by the symbol ν = (2l+1)/2, l = 0, 1, . . . , the function W reads as follows:

Wκ,ν(z) =
(−1)2ν+1

Γ(1/2− ν − κ)

[
Mκ,ν

(2l + 1)!
ln(z) +Hκ,ν

]
, z = −2i k r, κ = i /k,

Hκ,ν =
zl+1 exp[−z/2]

Γ(l + 1− κ)

{
∞∑
j=0

Γ(l + 1 + j − κ)

(2l + 1 + j)!
[Ψ(l + 1 + j − κ)−Ψ(1 + j)

−Ψ(2l + 2 + j)]
zj

j!
−

2l+1∑
j=1

Γ(l + 1− j − κ)

(2l + 1− j)!
(j − 1)!

(−z)j

}
, (A6)

where Ψ(y) = ∂y ln(Γ(y). The definitions of M and W agree with those given
in [1] and [5]; they are also exemplarily numerically confirmed by the built-in
Mathematica functions ”WhittakerM(W)[...]” [21]. For the implementation of
W in Mathematica, see [20].

B Numerical checks of the Wronskian of the

Whittaker functions

Mathematica [21] has implemented the Whittaker functionsMκ,ν(z) andWκ,ν(z),
where in the latter case, the underlying algorithm also applies when ν is half of
an uneven positive integer. The differentiations with respect to z are carried
out analytically by Mathematica.
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The test of the function T = T (k, l, r) refers to (23), without the factor
δ(r − r′)/r2. We use (24) and (27) to write

Tl(k, r) = cKcFWM,W − 1 = −i (−2i k)
Γ(1 + l − i /k)

2k(2l + 1)!
×

[Mκ,ν(z)∂zWκ,ν(z)−Wκ,ν(z)∂zMκ,ν(z)]− 1, (B1)

where κ = i /k, ν = (2l+1)/2, z = −2i k r. It is noticed that T (k, l, r) strictly
is zero independently of k > 0, l = 0, 1, 2, . . . , and r > 0. The numerical
results in Tab.1 are in the order of 10−15 to 10−14. The results of Tab.1 also
indicate the numerical accuracy of the built-in functions ”WhittakerM[...]” and
”WhittakerW[...]” of Mathematica.

{r, k} = {1, 0.6} {0.3, 1.5} {3.3, 0.1}
T0(k, r)× 1015 = (−0.9 + 2.8 i ), (0.2− 2.7 i ), (8.4 + 19 i ),
T1(k, r)× 1015 = (0.7− 1.9 i ), (−1.1 + 0.6 i ), (7.3.− 19. i ),
T2(k, r)× 1015 = (0.5 + 0.2 i ), (0.2− 0.2 i ), (14.+ 5. i )

Table 1: Numerical checks of the expression (B1), which strictly is zero for all
parameters k > 0, r > 0 and l = 0, 1, . . .

C Remarks on the second Meixner function

We found inconsistent definitions of the Meixner Function F2 which is defined
in Eq. (32) of [14] for the given Coulomb problem. Meixner’s definition differs
from that of Buchholz [4], which is given by (2b) on page 214 and reads (
notation unchanged)

F2 = 2Γ(1 + µ) exp [−i πκ+ z/2] z−(1+µ)/2W−κ,µ/2(−z)/Γ [(1 + µ)/2− κ] .
(C1)

Here, F2 depends on the Whittaker function W only, whereas Meixner’s F2

function contains an admixture of the Whittaker function M . Numerical
checks of the two versions confirm the discrepancy.

Now, when the Buchholz definition (C1) is inserted into Meixner’s Eq.(14)
[14], by setting µ = 1, κ = −i /k, and z = 2i kr, one gets the special case
G(r, 0, E), which is equivalent to the result (31). And in this way, Hostler and
Pratt [11] quote correctly that their result agrees with that of Meixner.
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