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Abstract 

 

A review of the published paper titled “Cosmology: The theoretical possibility of 

inverse gravity as a cause of cosmological inflation in an isotropic and 

homogeneous universe and its relationship to weakly interacting massive particles” 

is conducted. The original paper introduced the concept of cosmological expansions 

as described by a parameterized inversion of Newtonian gravitational force which 

is then applied to the mathematics of an isotropic and homogeneous F-L-R-W 

universe which inherently incorporates general relativity. Thus, after a review of 

the seminal paper, the cosmological inverse gravity assertion introduced in the 

original paper is applied to the cosmological constant of Einstein’s field equation, 

which defines cosmological expansion in terms of the new theoretical assertion. 

Lastly, it is shown that the mathematical structure of the theoretical concept gives 

to the notion of a mediating particle that conducts both the attractive forces of 

gravity and the repulsive forces of cosmological expansion and thus dark energy. 

This gives to an alternative theoretical notion to the graviton particle. 
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Introduction 

  
A recently published paper titled “Cosmology: The theoretical possibility of inverse 

gravity as a cause of cosmological inflation in an isotropic and homogeneous 

universe and its relationship to weakly interacting massive particles” [10] 

introduced a theoretical assertion in cosmology where parameterized inverse 

variations in Newtonian gravitational force are postulated to mathematically 

describe cosmological expansion. In the seminal paper, the Cosmological inverse 

gravity assertion was applied to established aspects of cosmology that showed 

consistency with observed astronomical phenomena. More specifically, the 

theoretical assertion was applied to an isotropic and homogeneous F-L-R-W 

universe incorporating the aspects of gravitational redshift of a photon’s 

wavelength, the Robertson-Walker scale factors, Hubble’s law, the Friedman-

Walker-Robertson metric, and the Einstein tensor in terms of an F-L-R-W universe 

which incorporates the description of curved space-time and thus general relativity. 

Additionally, the assertion was applied to weakly interacting massive particles 

(WIMPS) which required the use of quantum field theory (which is not reviewed in 

this paper). Therefore, this paper reviews the seminal paper and expounds on its 

assertion. This paper applies the cosmological inverse gravity assertion to 

Einstein’s cosmological constant and introduces an alternative to the theoretical 

notion of a graviton which does contradict the concept’s application to weakly 

interacting massive particles featured in the original paper. 
Section 1 reviews the core concepts and mathematical formulations of the original 

paper. The objective of the original paper was to introduce and show the assertion’s 

mathematical compatibility to fundamental and observed aspects of cosmology 

(e.g. the Einstein tensor in terms of the F-L-R-W), hence, the objective to section 2 

is to apply the theoretical assertion to Einstein’s cosmological constant which 

effectively solidifies and expands the theoretical assertions as a technically correct 

postulate. Lastly, the mathematical structure of the cosmological inverse gravity 

assertion, permits a description of a quantum particle that mediates gravity as well 

as inverse gravity (or expansion), thus implying an alternative notion to the 

theoretical graviton. Therefore, section 3 introduces the formulations that describe 

the proposed theoretical quantum particle. 

 

 

1. A review of the seminal paper 
 

  As previously expressed, the objective of section 1 is to review the mathematics 

and assertion of the seminal paper titled “Cosmology: The theoretical possibility of 

inverse gravity as a cause of cosmological inflation in an isotropic and 

homogeneous universe and its relationship to weakly interacting massive particles” 

[10]. Cosmological Inflation refers to accelerated expansion in the nascent universe 

within the early epochs shortly after the big bang while expansion refers to the 

expanding universe at the present time. One flaw with the seminal paper is the lack 

of clarity between cosmological inflation and expansion.  
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The cosmological inverse gravity assertion can be applied to inflation, however, it 

is more conducive to expansion. The original paper referred to the assertion as the 

inverse gravity inflationary assertion (IGIA). Thus, due to the fact that the 

theoretical assertion refers to the description of expansion as opposed to inflation, 

the assertion will be stated as the inverse gravity expansionary assertion (IGEA). 

Therefore, in commencing with the review, astronomical observations show that 

cosmological expansion progresses in opposition to gravitational force and thus 

accelerates cosmological mass and radiation (and space-time) in an inverse 

direction to gravity [10]. This fact allows one to hypothesize and deduce that the 

mathematical description of the structure of the universe could inherently 

incorporate a mathematical term that is inversely proportional to classical 

Newtonian gravitational force [10]. Due to the fact that cosmological expansion is 

only detectable at cosmological distances, logically, this implies that the inverse 

force is parameterized. Thus, a mathematical term that is inversely proportional to 

gravity must have a parameter that pertains to spatial or astronomical distance [10]. 

This parameter will permit the inverse term to have substantial effects beyond a 

given distance and minimal affects below a given distance which is consistent with 

the description of cosmological expansion. Force value 𝐹𝑔(𝑟)   denotes the classical 

Newtonian gravitational force equation while 𝐹𝑔
′(𝑟) denotes the inverse gravity 

term shown by Eq.1 displayed below [10] [11]. 

 

𝐹𝑔(𝑟) =
𝐺𝑚1 𝑚2

𝑟2                         𝐹𝑔
′(𝑟) = [

1

𝑟0
2] [

𝑟2

𝐺𝑚1 𝑚2
]    ;               1 > [

1

𝑟0
2]          (1) 

 

The constant distance 𝑟0 within the coefficient of the inverse term 𝐹𝑔
′(𝑟) is referred 

to as the spatial cosmological parameter in reference to the IGEA[10]. The 

variations in the classical gravitational force equation 𝐹𝑔(𝑟)  and the inverse gravity 

force term 𝐹𝑔
′(𝑟) combine to form total gravitational force 𝐹𝑇(𝑟) via Eq.2 (below) 

which is referred to as the Newtonian correction below [10]. 

 

        𝐹𝑇(𝑟) = 𝐹𝑔
′(𝑟) − 𝐹𝑔(𝑟) = [

1

𝑟0
2] [

𝑟2

𝐺𝑚1 𝑚2
] −

𝐺𝑚1 𝑚2

𝑟2      ;        1 > [
1

𝑟0
2]             (2)                      

The direction (+ or -) of the value of total force 𝐹𝑇(𝑟) has relationships defined by 

the inequalities of radius 𝑟 to distance 𝑟0 given by the conditions expressed below 

[10]. 

 

1.  𝐹𝑜𝑟  𝑟 > 𝑟0 ;  + 𝐹𝑇(𝑟)                2. 𝐹𝑜𝑟  𝑟 < 𝑟0 ;   − 𝐹𝑇(𝑟)                      (3)                                                  

 

Condition (1) (of Eq.3) describes cosmological expansion or force + 𝐹𝑇(𝑟) away 

from the gravitational force center (i.e. the center of the universe) for distances 𝑟 >
𝑟0  [10]. Conversely, for condition (2) (of Eq. 3), the inverse gravity term  𝐹𝑔

′(𝑟) in 

total force 𝐹𝑇(𝑟) is negligible at distance 𝑟 < 𝑟0 causing force direction − 𝐹𝑇(𝑟) 

toward the center of gravitational force (i.e. gravity over takes  
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the inverse term 𝐹𝑔
′(𝑟) on 𝑟 < 𝑟0 which represents local scales) [10].This clearly 

conveys that the core concept of the IGEA is consistent with the general description 

of the phenomenon of universal or cosmological expansion.  

  The value of the spatial cosmological parameter of distance 𝑟0 is determined where 

total force value 𝐹𝑇(𝑟) (of Eq.2) equals zero and radius 𝑟 equals cosmological 

parameter 𝑟0 (i.e. 𝐹𝑇(𝑟0) = 0 and 𝑟 = 𝑟0 )  [10]. Furthermore, this implies that for 

the condition of 𝐹𝑇(𝑟0) = 0,  the inverse force terms  𝐹𝑔
′(𝑟0) and the classical 

gravitational force term 𝐹𝑔(𝑟0) of total force 𝐹𝑇(𝑟0) (of Eq.2) at parametric distance 

𝑟0 are equal (𝐹𝑔
′(𝑟0) = 𝐹𝑔(𝑟0)) in 𝐹𝑇(𝑟0)  [10]. Therefore, total force 𝐹𝑇(𝑟0) can be 

presented such that [10]: 

 

𝐹𝑇(𝑟0) = 𝐹𝑔
′(𝑟0) − 𝐹𝑔(𝑟0) = [

1

𝑟0
2] [

(𝑟0)2

𝐺𝑚1 𝑚2
] −

𝐺𝑚1 𝑚2

(𝑟0)2
= 0                                (4) 

Solving Eq.4 for the spatial cosmological parameter of distance 𝑟0 gives a value 

such that [10]: 

 

𝑟0 = 𝐺𝑚1 𝑚2                                                                       (5) 

The uniform distribution of cosmological masses 𝑚1 and 𝑚2 over a spherically 

symmetric volume describing a homogeneous isotropic universe separated by a 

diameter of distance 𝑟0  mathematically require the mass interaction 𝑚1 𝑚2 to be 

expressed as a triple integral such that  [11]: 

 

𝑟0 = 𝐺𝑚1 𝑚2 = 𝐺[∫ ∫ ∫ 𝑚(𝑚ц
′ 𝑚ц

′ )
𝜋

0

𝜋

0

𝑚𝑢

0
𝑑𝑚𝑑𝜃𝑑𝜙]                        (6) 

 

Where mass 𝑚𝑢 (highlighted above) which is the upper limit of the integral with 

respect to variations in mass is the mass of the universe and thus constitutes all 

matter of the universe[11]. Thus mass  𝑚𝑢 is approximately 27% of the critical 

density of the universe commonly denoted as 𝜌𝑐 [10] [11].The critical density of 

matter denoted (.27)𝜌𝑐relates to the mass of the universe 𝑚𝑢 and energy 𝐸 via the 

relativistic energy equation of 𝐸 = 𝑚𝑢𝑐2 = (.27)𝜌𝑐𝑐
2, therefore, this implies that 

universal mass 𝑚𝑢 has a value such that [10] [11]: 

 

𝑚𝑢 = (.27)𝜌𝑐 ≡ (.27)
3𝐻0

2

8𝜋𝐺
                                            (7) 

The value of critical density  𝜌𝑐 is given as 3𝐻0
2 8𝜋𝐺⁄  (e.g. 𝜌𝑐 = 3𝐻0

2 8𝜋𝐺⁄ ) in 

terms of Hubble’s constant 𝐻0 and  gravitational constant 𝐺 [10][11]. Variable mass 

𝑚ц
′  within Eq.6 is a function of spherical coordinates at 𝜃and 𝜙 and mass 𝑚 (which 

is a variation in mass in reference to integration) such that [10]: 

 

𝑚ц
′ = [(𝑚𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙)2 + (𝑚𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙)2 + (𝑚𝑐𝑜𝑠𝜙)2]1/2                (8) 

 



Relationship between the cosmological inverse gravity assertion …                    41  

 

 

Where variable mass 𝑚ц
′  correspond to the symmetric variations in mass values 𝑚1 

and 𝑚2 evenly distributed about the spherically symmetric volume, this implies that 

mass interaction 𝑚1 𝑚2 over a spherically symmetric volume is expressed by the 

triple integral (of Eq. 6) such that [10]: 

 

𝑚1 𝑚2 = ∫ ∫ ∫ 𝑚3[(𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙)2 + (𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙)2 + (𝑐𝑜𝑠𝜙)2]
𝜋

0

𝜋

0

𝑚𝑢

0
𝑑𝑚𝑑𝜃𝑑𝜙    (9) 

As implied by Eq. 5 and Eq.6, masses 𝑚1 and 𝑚2  are spatially located on opposite 

sides of (and are separated by) parameter distance 𝑟0, thus the continuous sums (or 

integration) progress as a rotation where the mass values on opposite sides of 

distance 𝑟0 rotate and sum up to universal mass value 𝑚𝑢 [10]. Therefore, the 

rotation of continuous sums over the spherical coordinates at 𝜃and 𝜙 that transpire 

from zero to 𝜋 encompass the entire spherical volume due to the fact that the 

rotation on one side of distance 𝑟0 sum up to half the spherical volume (or 𝜋 ) and 

the other side of distance 𝑟0 rotates and sum up to the other half (or 𝜋) of the 

spherical volume [10]; which equal the whole. Thus, Eq.9 above gives the mass 

interaction 𝑚1 𝑚2 corresponding to the gravitational interaction of cosmological 

masses over distance 𝑟0  [10]. 

Thus in continuing the review, gravitational potential energy in terms of the IGEA, 

is the integrations of the Newtonian correction force 𝐹𝑇(𝑟) in respect to radius 𝑟 as 

shown below[10][11]. 

 

𝑈𝑇(𝑟) = ∫𝐹𝑇(𝑟)𝑑𝑟 = ∫ [[
1

𝑟0
2] [

𝑟2

𝐺𝑚1 𝑚2
] −

𝐺𝑚1 𝑚2

𝑟2 ] 𝑑𝑟                       (10) 

Thus after evaluating the integral of Eq. 10 above, one obtains a value of potential 

energy 𝑈𝑇(𝑟) in terms of the IGEA such that [10] [11]: 

 

𝑈𝑇(𝑟) = [
1

𝑟0
2] [

𝑟3

3𝐺𝑚1 𝑚2
] +

𝐺𝑚1 𝑚2

𝑟
                                       (11) 

As a photon propagates over a distance  𝑟 of the region of expansion, the amount 

of work enacted on the photon by energy IGEA energy 𝑈𝑇(𝑟) is given by ℎ𝑐 𝜆𝑔⁄  

[10][11]. Hence, gravitational potential energy 𝑈𝑇(𝑟) defined in terms of the IGEA 

is set equal to the photonic energy of wave length 𝜆𝑔such that [10] [11]:  

                                           
ℎ𝑐

𝜆𝑔
= 𝑈𝑇(𝑟)                                                  (12) 

Energy 𝐸0 is the initial energy of the photon (𝐸0 = (ℎ𝑐 𝜆0)⁄ ) prior to propagating 

through the region of expansion [10] [11]. Conclusively, the value of the photonic 

energy affected by the IGEA potential energy field of 𝑈𝑇(𝑟) can be alternatively 

expressed such that [10] [11]: 
ℎ𝑐

𝜆𝑔
= [

1

𝑟0
2] [

𝑟3

3𝐺𝑚1 𝑚2
] +

𝐺𝑚1 𝑚2

𝑟
                                                 (13)    
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We briefly express red shift 𝑧 given below [7] [10]. 

 

𝑧 =
𝑈𝑇(𝑟)−𝐸0

𝐸0
=

(
ℎ𝑐

𝜆𝑔
)−𝐸0

𝐸0
≡

𝜆0

𝜆𝑔
− 1                                         (14) 

Eq.14 relates the theoretical potential energy 𝑈𝑇(𝑟) to redshift 𝑧  which will relates 

to the scale factors of Eq.17. Now substituting the value of Eq.13 into the 

gravitational red shift equation of Eq. 14 above gives [7] [9] [10]: 

 

𝑧 =  
1

𝐸0
([

1

𝑟0
2] [

𝑟3

3𝐺𝑚1 𝑚2
] +

𝐺𝑚1 𝑚2

𝑟
) − 1                           (15) 

Prior to continuing the derivation, an important clarification must be expressed. 

It is paramount to justify the use of gravitational redshift 𝑧 of Eq. 14-15 as opposed 

to using the Schwarzchild expression of gravitational redshift shown below [9] 

[10]. 

𝜆𝑅

𝜆𝐸
− 1 = √

1−2𝐺𝑀 𝑟𝑅⁄

1−2𝐺𝑀 𝑟𝐸⁄
− 1                                   (16) 

Where 𝜆𝐸 and 𝜆𝑅 denote the initial and final wavelength values of a photon 

propagating through a gravitational potential and distance  𝑟𝐸 from the gravitational 

body’s center of mass 𝑀 and  distance 𝑟𝑅  from the gravitational center of the body 

to the propagating photon [9][10]. There are two purposes for not using the 

Schwarzchild equation of gravitational redshift above in the IGEA. The first is that 

in an FRW universe describing an isotropic and homogeneous model, cosmological 

expansion and thus redshift (𝑧) is described in relation to the scale factors 𝑎(𝑡) (e.g. 

𝑎0 and 𝑎(𝑡𝑒𝑚) ) [9] [10]. Whereas cosmological expansion is a result of the 

expansion of space-time itself versus gravitational red shift due to the gravitational 

curving space-time corresponding to a body of mass 𝑀 [10]. Additionally, it is 

believed that new volumes of space-time are created as the universe expands. The 

second purpose is that the Schwarzchild description of gravitational redshift is not 

mathematically compatible to the IGEA, being that a point mass 𝑚0 (as in 

𝐺𝑀𝑚0 𝑟⁄ ) does not conveniently cancel out the equation when the energy values 

are set equal to one another [10]. 

 In continuing with the formulation, red shift value 𝑧 is related to the scale factor of 

the past (or the time of emission) denoted 𝑎(𝑡𝑒𝑚) and the present denoted 𝑎0 such 

that [7] [9] [10]: 

 

1 + 𝑧 =
𝑎0

𝑎(𝑡𝑒𝑚)
                                                       (17) 

Substituting the IGEA value of redshift 𝑧 of Eq. 15 into Eq. 17 above gives [10]: 

 

1 + ((
1

𝐸0
[[

1

𝑟0
2] [

𝑟3

3𝐺𝑚1 𝑚2
] +

𝐺𝑚1 𝑚2

𝑟
]) − 1) =

𝑎0

𝑎(𝑡𝑒𝑚)
                      (18) 
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This reduces to [10]: 

 

1

𝐸0
[[

1

𝑟0
2] [

𝑟3

3𝐺𝑚1 𝑚2
] +

𝐺𝑚1 𝑚2

𝑟
] =

𝑎0

𝑎(𝑡𝑒𝑚)
                                                      (19) 

If follows that the value of the scale factor 𝑎(𝑡𝑒𝑚) at the time 𝑡𝑒𝑚 of the photon’s 

emission is expressed such that [10]: 

𝑎(𝑡𝑒𝑚) = 𝑎0 [
1

𝐸0
[[

1

𝑟0
2] [

𝑟3

3𝐺𝑚1 𝑚2
] +

𝐺𝑚1 𝑚2

𝑟
]]

−1

                                          (20) 

Where Eq.20 is of the form 𝑎(𝑡) = 1 (1 + 𝑧)⁄  [7] which implies that scale factor 

𝑎0 equals 1 (𝑎0 = 1) [10]. Recall that 𝑎0 is the scale factor of the universe as it is 

presently and 𝑎(𝑡𝑒𝑚) is the scale factor at the emission time  𝑡𝑒𝑚 of the photon (or 

a scale factor of the universe as it was in the  past as some authors state it)[7] [10]. 

The Friedman-Lemaitre-Walker-Robertson metric is shown below [9] [10]. 

 

𝑑𝛴2 = −𝑑𝑡2 + 𝑎2(𝑡) [
𝑑𝑟2

1−𝑘𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜙2]                                  (21) 

Substituting the value of scale factor 𝑎(𝑡𝑒𝑚) (Eq.20) into Eq. 21 above gives the 

Friedman-Walker-Robertson metric in terms of the IGEA such that [10]:  

  

𝑑𝛴2 = −𝑑𝑡2 + [𝑎0 [
1

𝐸0
[[

1

𝑟0
2] [

𝑟3

3𝐺𝑚1 𝑚2
] +

𝐺𝑚1 𝑚2

𝑟
]]

−1

]

2

[
𝑑𝑟2

1−𝑘𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜙2]   (22)        

Observe that Eq. 20 or the IGEA scale factor is a function of radius 𝑟, which relates 

to the Minkowski coordinates (𝑡, 𝑥, 𝑦, 𝑧) for signature (- + + +) such that [9] [10]: 

 

𝑟 = [−𝑡2 + 𝑥2+𝑦2 + 𝑧2]1/2             →             𝑡2 ≤ 𝑥2+𝑦2 + 𝑧2                     (23) 

On a cosmological level, the initial points (𝑡0 = 0, 𝑥0 = 0, 𝑦0 = 0, 𝑧0 = 0) in radial 

distance 𝑟  above reside at an origin point of the singularity of the big bang. 

Substituting the value of Eq. 23 into Eq. 20 gives the IGEA scale factor as a function 

of the Minkowski coordinates (denoted 𝑎(𝑡, 𝑥, 𝑦, 𝑧)) such that [9] [10]: 

 

𝑎(𝑡𝑒𝑚) = 𝑎(𝑡, 𝑥, 𝑦, 𝑧) = 𝑎0 [
1

𝐸0
[[

1

𝑟0
2] [

(−𝑡2+𝑥2+𝑦2+𝑧2)3/2

3𝐺𝑚1 𝑚2
] +

𝐺𝑚1 𝑚2

[−𝑡2+𝑥2+𝑦2+𝑧2]1/2]]

−1

                

(24) 

The time derivative of scale factor 𝑎(𝑡𝑒𝑚) is denoted 𝑎(𝑡, 𝑥, 𝑦, 𝑧)̇  (where 

𝑎(𝑡, 𝑥, 𝑦, 𝑧) is simply scale factor 𝑎(𝑡𝑒𝑚) ) in respect to the time coordinate 𝑡 (keep  
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in mind that 𝑡 = 𝑡𝑒𝑚) of the Minkowski coordinates and can be expressed such that 

[9] [10]: 

    𝑎(𝑡, 𝑥, 𝑦, 𝑧)̇ =
𝑑𝑎(𝑡,𝑥,𝑦,𝑧)

𝑑𝑡
=

𝜕

𝜕𝑡
[𝑎0 [

1

𝐸0
[[

1

𝑟0
2] [

(−𝑡2+𝑥2+𝑦2+𝑧2)3/2

3𝐺𝑚1 𝑚2
] +

𝐺𝑚1 𝑚2

[−𝑡2+𝑥2+𝑦2+𝑧2]1/2]]

−1

]                

(25) 

In implementing the chain rule, the first time derivative (𝑑𝑎(𝑡, 𝑥, 𝑦, 𝑧)) 𝑑𝑡⁄ )  of the 

IGEA scale factor denoted 𝑎(𝑡, 𝑥, 𝑦, 𝑧)̇  gives a value such that [10]: 

 

𝑎(𝑡, 𝑥, 𝑦, 𝑧)̇ = 2𝑡𝑎0 [
1

𝐸0
[[

1

𝑟0
2] [

(−𝑡2 + 𝑥2+𝑦2 + 𝑧2)1/2

2𝐺𝑚1 𝑚2
]

+
𝐺𝑚1 𝑚2

2[−𝑡2 + 𝑥2+𝑦2 + 𝑧2]3/2
]] [

1

𝐸0
[[

1

𝑟0
2] [

(−𝑡2 + 𝑥2+𝑦2 + 𝑧2)3/2

3𝐺𝑚1 𝑚2
] +

𝐺𝑚1 𝑚2

[−𝑡2 + 𝑥2+𝑦2 + 𝑧2]1/2
]]

−2

 

(26) 

Eq.25 and thus Eq.  26 afford the opportunity to briefly present Hubble’s constant 

in terms of the IGEA such that [9] [10] [11]: 

 

𝐻(𝑡) =
𝑎̇

𝑎
= [

1

𝑎(𝑡,𝑥,𝑦,𝑧)
]

𝑑𝑎(𝑡,𝑥,𝑦,𝑧)

𝑑𝑡
                                                       (27) 

Therefore, Hubble’s constant takes on a value in terms of the IGEA such that [10] 

[11]: 

 

𝐻(𝑡) = 2𝑡𝑎0 [
1

𝐸0
[[

1

𝑟0
2] [

(−𝑡2+𝑥2+𝑦2+𝑧2)1/2

2𝐺𝑚1 𝑚2
] +

𝐺𝑚1 𝑚2

2[−𝑡2+𝑥2+𝑦2+𝑧2]3/2
]] [

1

𝐸0
[[

1

𝑟0
2] [

(−𝑡2+𝑥2+𝑦2+𝑧2)3/2

3𝐺𝑚1 𝑚2
] +

𝐺𝑚1 𝑚2

[−𝑡2+𝑥2+𝑦2+𝑧2]1/2]]

−1

         (28)                        

Thus in an isotropic and homogeneous universe, the 𝑉(𝑡) velocity of cosmological 

expansion is expressed in reference to Hubble’s Law such that [9] [10] [11]: 

 

𝑉(𝑡) =
𝑅𝑎(𝑡)̇

𝑎(𝑡)
= [

𝑅

𝑎(𝑡)
]

𝑑𝑎(𝑡)

𝑑𝑡
                                                           (29) 

Where 𝑅 is the distance from the observer, the velocity of expansion 𝑉(𝑡) in terms 

of the IGEA is given such that [10] [11]: 

 

 

𝑉(𝑡) = 2𝑡𝑅𝑎0 [
1

𝐸0
[[

1

𝑟0
2] [

(−𝑡2+𝑥2+𝑦2+𝑧2)1/2

2𝐺𝑚1 𝑚2
] +

𝐺𝑚1 𝑚2

2[−𝑡2+𝑥2+𝑦2+𝑧2]3/2]] [
1

𝐸0
[[

1

𝑟0
2] [

(−𝑡2+𝑥2+𝑦2+𝑧2)3/2

3𝐺𝑚1 𝑚2
] +

𝐺𝑚1 𝑚2

[−𝑡2+𝑥2+𝑦2+𝑧2]1/2]]

−1

              (30) 
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At this juncture, the IGEA can be expressed in terms of the curved geometry of 

Space-time of general relativity. According to Wald [9], the Ricci tensor values of 

𝑅𝑡𝑡 and 𝑅∗∗ are then related to the scale factor 𝑎(𝑡, 𝑥, 𝑦, 𝑧) in terms of the IGEA by 

the equations of (where 𝑎̈ = 𝑑2(𝑎(𝑡, 𝑥, 𝑦, 𝑧)) 𝑑𝑡2⁄ ) [9] [10]: 

 

𝑅𝑡𝑡 = −3𝑎(𝑡, 𝑥, 𝑦, 𝑧)̈ /𝑎(𝑡, 𝑥, 𝑦, 𝑧)                                         (31)  

𝑅∗∗ = 𝑎(𝑡, 𝑥, 𝑦, 𝑧)−2𝑅𝑥𝑥 =
𝑎(𝑡,𝑥,𝑦,𝑧)̈

𝑎(𝑡,𝑥,𝑦,𝑧)
+ 2

(𝑎(𝑡,𝑥,𝑦,𝑧)̇ )2

𝑎(𝑡,𝑥,𝑦,𝑧)2
                      (32) 

As stated by Wald, the general value of Ricci tensor 𝑅𝑥𝑥 in Eq.31-32 above relates 

to the christoffel symbol via the form [9] [10]: 

 

𝑅𝑥𝑥 = ∑
𝜕𝑦

𝜕𝑥𝑐𝑐 𝛤𝑥𝑥
𝑐 −

𝜕

𝜕𝑥𝑥
(∑ 𝛤𝑐𝑥

𝑐
𝑐 ) + ∑ (𝛤𝑥𝑥

𝑑 𝛤𝑑𝑐
𝑐 − 𝛤𝑐𝑥

𝑑𝛤𝑑𝑥
𝑐  )𝑑,𝑐                    (33) 

Thus we acknowledge that the value of the symmetric Christoffel symbols 𝛤𝑏𝑐
𝑎  are 

of the form [9] [10]: 

 

𝛤𝑏𝑐
𝑎 =

1

2
∑ 𝑔𝑎𝑑 {

𝜕𝑔𝑐𝑏

𝜕𝑥𝑏 +
𝜕𝑔𝑐𝑎

𝜕𝑥𝑐 −
𝜕𝑔𝑏𝑐

𝜕𝑥𝑐 }𝑑                                (34) 

Which correspond to the expressions of the Ricci tensor 𝑅𝑡𝑡and 𝑅∗∗ of Eq.31-32. It 

is important to state that the value of the scalar curvature 𝑅 is given such that [9] 

[10]: 

𝑅 = −𝑅𝑡𝑡 + 3𝑅∗∗                                                           (35) 

Substituting the value of Eq.31  and Eq.32 into Eq.35  give a value such that [9] 

[10]: 

𝑅 = −𝑅𝑡𝑡 + 3𝑅∗∗ = 6(
𝑎(𝑡,𝑥,𝑦,𝑧)̈

𝑎(𝑡,𝑥,𝑦,𝑧)
+

(𝑎(𝑡,𝑥,𝑦,𝑧)̇ )2

𝑎(𝑡,𝑥,𝑦,𝑧)2
)                                                (36) 

Conclusively as expressed in the seminal paper and  by Wald [9], the values of the 

Einstein tensor denoted 𝐺𝑡𝑡 and 𝐺∗∗ in terms of the IGEA scale factor 𝑎(𝑡, 𝑥, 𝑦, 𝑧) 

as given such that [10]: 

 

 𝐺𝑡𝑡 =
3(𝑎(𝑡,𝑥,𝑦,𝑧)̇ )2

𝑎(𝑡,𝑥,𝑦,𝑧)2
= 𝑅𝑡𝑡 +

1

2
𝑅 = 8𝜋𝜌                                     (37) 

𝐺∗∗ = −2
𝑎(𝑡,𝑥,𝑦,𝑧)̈

𝑎(𝑡,𝑥,𝑦,𝑧)
−

(𝑎(𝑡,𝑥,𝑦,𝑧)̇ )
2

𝑎(𝑡,𝑥,𝑦,𝑧)2
= 𝑅∗∗ −

1

2
𝑅 = 8𝜋𝑃                                (38) 

 

Due to the fact that the description of the IGEA  is defined in reference to a 

homogeneous and isotropic universe, the  general evolutions for a isotropic and 

homogeneous universe as defined by Wald [9] and in respect to the IGEA scale 

factors are given such that [1] [9] [10]: 
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3(𝑎(𝑡,𝑥,𝑦,𝑧)̇ )2

𝑎(𝑡,𝑥,𝑦,𝑧)2
= 8𝜋𝜌 −

3𝑘

𝑎(𝑡,𝑥,𝑦,𝑧)2
                                             (39)   

 

 
3𝑎(𝑡,𝑥,𝑦,𝑧)̈

𝑎(𝑡,𝑥,𝑦,𝑧)
= −4𝜋(𝜌 + 3𝑃 )                                             (40)                                                                      

Where 𝑃 denotes pressure corresponding to thermal radiation pressure and 𝜌 is the 

average mass density [9] [10],  the scale factors 𝑎(𝑡, 𝑥, 𝑦, 𝑧) and their corresponding 

time derivatives (𝑎(𝑡, 𝑥, 𝑦, 𝑧)̇  and 𝑎(𝑡, 𝑥, 𝑦, 𝑧)̈  ) can be defined in terms of the IGEA 

scale factor of Eq. 38); constant 𝑘 is equal to +1 (𝑘 = +1) and 𝑟 > 𝑟0 for positive 

spherical curvature describing the expansion of the cosmological fluid in a 

homogeneous isotropic universe [9] [10]. This shows the complete mathematical 

incorporation of the IGEA to the mathematical description of a homogeneous and 

isotropic universe and achieves the goal of defining the IGEA in terms of curved 

space-time which is consistent with General relativity. 

 

2. Einstein’s Cosmological constant defined in terms of the IGEA 
  

The objective of the seminal paper [10] was to introduce the cosmological inverse 

gravity assertion and its correlation to observed cosmological phenomena and 

established fundamental aspects of cosmology. Thus, in the seminal paper, the 

cosmological inverse gravity assertion introduced fundamental mathematical 

correlations to an F-L-R-W universe that excluded Einstein’s cosmological 

constant. Therefore, Section 2 will introduce Einstein’s cosmological constant in 

terms of the IGEA. The IGEA is described in terms of the F-L-R-W Universe, thus, 

we begin with Einstein field equations including the cosmological constant 𝛬 in 

terms of the Einstein field equation define in an F-L-R-W universe  for thermal 

pressure 𝑃 and the average mass density 𝜌 shown below (curvature constant 𝑘 is 

equal to +1 (𝑘 = +1) for 𝑟 > 𝑟0) [8]. 

 

(
𝑎̇

𝑎
)
2

+
𝑘𝑐2

𝑎2 −
𝛬𝑐2

3
=

8𝜋𝐺

3
𝜌                                               (41) 

 

2 (
𝑎̈

𝑎
) + (

𝑎̇

𝑎
)
2

+
𝑘𝑐2

𝑎2
− 𝛬𝑐2 = −

8𝜋𝐺

3
𝑃                                       (42) 

Where 𝐺 is the gravitational constant and 𝑐 the velocity of light, the values of the 

cosmological constant 𝛬 can be expressed such that: 

 

𝛬 =    
3

𝑐3 [(
𝑎̇

𝑎
)
2

+
𝑘𝑐2

𝑎2 −
8𝜋𝐺

3
𝜌]      =      

1

𝑐2 [2 (
𝑎̈

𝑎
) + (

𝑎̇

𝑎
)
2

+
𝑘𝑐2

𝑎2 +
8𝜋𝐺

3
𝑃]             (43) 

 

Recall that the scale factor 𝑎 in terms of the IGEA is expressed such that: 
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𝑎(𝑡, 𝑥, 𝑦, 𝑧) = 𝑎0 [
1

𝐸0
[[

1

𝑟0
2] [

(−𝑡2+𝑥2+𝑦2+𝑧2)3/2

3𝐺𝑚1 𝑚2
] +

𝐺𝑚1 𝑚2

[−𝑡2+𝑥2+𝑦2+𝑧2]1/2]]

−1

              (44) 

 

 

Setting scale factor 𝑎 in Eq.41-43 equal to the IGEA scale factor 𝑎(𝑡, 𝑥, 𝑦, 𝑧) (𝑎 =
𝑎(𝑡, 𝑥, 𝑦, 𝑧)), the cosmological constant in terms of the IGEA denoted 𝛬𝐼𝐺, have 

values in terms of  thermal pressure 𝑃 and the average mass density 𝜌 such that: 

 

𝛬𝐼𝐺 =
3

𝑐3 [(
𝑎(𝑡,𝑥,𝑦,𝑧)̇

𝑎(𝑡,𝑥,𝑦,𝑧)
)
2

+
𝑘𝑐2

(𝑎(𝑡,𝑥,𝑦,𝑧))
2 −

8𝜋𝐺

3
𝜌]                                       (45) 

 

𝛬𝐼𝐺 =
1

𝑐2 [2 (
𝑎(𝑡,𝑥,𝑦,𝑧)̈

𝑎(𝑡,𝑥,𝑦,𝑧)
) + (

𝑎(𝑡,𝑥,𝑦,𝑧)̇

𝑎(𝑡,𝑥,𝑦,𝑧)
)
2

+
𝑘𝑐2

(𝑎(𝑡,𝑥,𝑦,𝑧))
2 +

8𝜋𝐺

3
𝑃]                           (46) 

 

Where  

𝑎(𝑡, 𝑥, 𝑦, 𝑧)̇  = 𝑑𝑎(𝑡, 𝑥, 𝑦, 𝑧)) 𝑑𝑡⁄     𝑎𝑛𝑑    𝑎(𝑡, 𝑥, 𝑦, 𝑧)̈ = 𝑑2(𝑎(𝑡, 𝑥, 𝑦, 𝑧)) 𝑑𝑡2⁄ . 

Thus, concluding the derivation and the mathematical incorporation of the IGEA to 

the cosmological constant. 

 

3. An alternative to the graviton particle as derived by the IGEA 
   

The IGEA heralds an alternative theoretical proposal to the nature of the speculated 

mediating force particle of gravity i.e. the graviton. The IGEA postulates that the 

expansion of the universe in opposition to gravity at cosmological scales implies 

that a particle mediating the force of gravity must also incorporate the inverse 

variations of dark energy and thus the force of expansion. In commencing with the 

mathematical description of the theoretical IGEA  mediating particle, gravitational 

potential energy on a cosmological level was defined in terms of the IGEA in Eq. 

10  such that: 

 

𝑈𝑇(𝑟) = [
1

𝑟0
2] [

𝑟3

3𝐺𝑚1 𝑚2
] +

𝐺𝑚1 𝑚2

𝑟
                                (47) 

As expressed by Eq. 9, the gravitational mass interaction (or mass product) 𝑚1𝑚2 

denotes the cosmological masses of the universe which are evenly and uniformly 

distributed over a spherical volume, the mass product 𝑚1𝑚2 was expressed as the 

triple integral such that: 

𝑚1𝑚2 = ∫ ∫ ∫ 𝑚3[(𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙)2 + (𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙)2 + (𝑐𝑜𝑠𝜙)2]
𝜋

0

𝜋

0

𝑚𝑢

0
𝑑𝑚𝑑𝜃𝑑𝜙   (48) 
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Therefore, for gravitational interactions between masses that are less than 

cosmological masses 𝑚1 and 𝑚2 (of mass product 𝑚1𝑚2 above), mass values 𝑚𝑎1 

and 𝑚𝑎2 are any two mass values that are within and less than the total cosmological 

mass value. Thus, the mass product of masses 𝑚𝑎1 and 𝑚𝑎2 (𝑚𝑎1𝑚𝑎2) are required 

to be less than the mass product of cosmological masses 𝑚1 and 𝑚2 (𝑚1𝑚2) as 

expressed by the inequality below. 

 

𝑚1𝑚2 > 𝑚𝑎1𝑚𝑎2                                                            (49) 

Here, we define energy 𝐸𝑎 as the potential energy of gravity and inverse gravity 

between two arbitrary masses 𝑚𝑎1 and 𝑚𝑎2 which are separated by a distance 𝛾𝑎 

(𝑟 ≥ 𝛾𝑎). This implies that values of energy 𝐸𝑎 are less than the cosmological level 

energy 𝑈𝑇(𝑟) of Eq. 47 (𝑈𝑇(𝑟) > 𝐸𝑎). The value of energy 𝐸𝑎 is given in terms of 

masses 𝑚𝑎1 and 𝑚𝑎2 and distance 𝛾𝑎such that: 

 

𝐸𝑎 = [
1

𝑟0
2] [

(𝛾𝑎)3

3𝐺𝑚𝑎1𝑚𝑎2 
] +

𝐺𝑚𝑎1𝑚𝑎2 

𝛾𝑎
                                             (50) 

Observe that the parameter of distance 𝑟0 in Eq.50 above has a value that remains 

in terms cosmological mass product 𝑚1𝑚2 (of Eq.6) as shown below. 

 

𝑟0 = 𝐺𝑚1 𝑚2 ≡ 𝐺 ∫ ∫ ∫ 𝑚3[(𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙)2 + (𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙)2 +
𝜋

0

𝜋

0

𝑚𝑢

0

(𝑐𝑜𝑠𝜙)2] 𝑑𝑚𝑑𝜃𝑑𝜙           (51) 

The parameterization of the inverse term of gravity (i.e.1 𝑟0
2⁄ ) is contingent on the 

cosmological mass (of Eq.48) of the universe and remains constant at any level 

including the subatomic and quantum realms. The value of parameter distance 𝑟0 is 

determined by the value of the matter of the universe 𝑚𝑢 defined in Eq.7, along 

with variations in coordinates at 𝜃 and 𝜙. Recall that 𝑚𝑢 of Eq.7 has a value such 

that: 

𝑚𝑢 = (.27)𝜌𝑐 ≡ (.27)
3𝐻0

2

8𝜋𝐺
                                                  (52) 

The value of universe mass 𝑚𝑢 within parameter 𝑟0 is substantial and effectively 

parameterizes the inverse gravity variations of masses 𝑚𝑎1 and 𝑚𝑎2 separated by 

distance 𝛾𝑎 within energy 𝐸𝑎 on both macroscopic and subatomic levels. Thus, the 

objective of this section is to show that gravitational interactions and thus force 

between any arbitrary mass 𝑚𝑎1 and 𝑚𝑎2 which are separated by a distance 𝛾𝑎 

(𝛾𝑎 > 0) are mediated by bosons of energy 𝐸𝑎, thus energy 𝐸𝑎 is set equal to 

relativistic energy 𝑝𝑐 as shown below (where 𝑝 denotes momentum and 𝑐 the 

velocity of light ). 

𝐸𝑎 = 𝑝𝑐                                                  (53) 

Eq.53 can alternatively be expressed such that [10]: 
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𝑝𝑐 = [
1

𝑟0
2] [

(𝛾𝑎)3

3𝐺𝑚𝑎1𝑚𝑎2 
] +

𝐺𝑚𝑎1𝑚𝑎2 

𝛾𝑎
                                                 (54) 

Like the theoretical graviton, the IGEA mediating particle does not have a length 

limit or range as with the mediating particles of the other three fundamental forces. 

However, as with the other mediating particles, the IGEA mediating particle is 

governed by the uncertainty principle (∆𝐸∆𝑡 ≥ ħ), thus the IGEA energy value 𝐸𝑎 

is set equal uncertainty in energy of ∆𝐸  (i.e.∆𝐸 = 𝐸𝜇) [10]. The product of energy 

(∆𝐸) and time (∆𝑡) (∆𝐸∆𝑡 = (𝐸𝑎)∆𝑡) can be expressed such that [10]: 

 

 

∆𝐸∆𝑡 = ([
1

𝑟0
2] [

(𝛾𝑎)3

3𝐺𝑚𝑎1𝑚𝜇2 
] +

𝐺𝑚𝑎1𝑚𝑎2 

𝛾𝑎
) ∆𝑡                                   (55) 

The Heisenberg uncertainty principle (∆𝐸∆𝑡 ≥ ħ) can be expressed in terms of the 

IGEA such that: 

 

([
1

𝑟0
2] [

(𝛾𝑎)3

3𝐺𝑚𝑎1𝑚𝑎2 
] +

𝐺𝑚𝑎1𝑚𝑎2 

𝛾𝑎
)∆𝑡 ≥ ħ                                      (56) 

Thus the values of energy 𝐸𝑎 and the uncertainty in time ∆𝑡 must satisfy the 

inequality of Eq.56 above. In continuing the mathematical description of the 

theoretical particle, we solve Eq.54 for momentum  𝑝  giving a value of momentum 

such that: 

 

𝑝 =
1

𝑐
[[

1

𝑟0
2] [

(𝛾𝑎)3

3𝐺𝑚𝑎1𝑚𝑎2 
] +

𝐺𝑚𝑎1𝑚𝑎2 

𝛾𝑎
]                                             (57) 

Thus, we observe that the theoretical particle has the property of both repulsive and 

attractive terms within the momentum value 𝑝 as shown below.   

 

𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒:    [
1

𝑐𝑟0
2] [

(𝛾𝑎)3

3𝐺𝑚𝑎1𝑚𝑎2 
]                     𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒:   

𝐺𝑚𝑎1𝑚𝑎2 

𝑐𝛾𝑎
                     (58) 

Therefore, for sufficient distance values 𝛾𝑎, momentum 𝑝 is repulsive, thus for 

lesser distance values of 𝛾𝑎, momentum 𝑝 is 𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒. An important dilemma 

that must be addressed is embodied in the hypothetical question of “what if masses 

𝑚𝑎1 and 𝑚𝑎2 of mass product 𝑚𝑎1𝑚𝑎2 of Eq.58 become infinitesimally small (i.e. 

𝑚𝑎1 → 0 and 𝑚𝑎2 → 0 which implies that 𝑚𝑎1𝑚𝑎2 → 0)?”.  This would imply that 

the repulsive or inverse gravity term in Eq.57-58 would become infinitely large, 

which means that the momentum, force, and energy value between the particles of  

infinitesimally small mass values 𝑚𝑎1 and 𝑚𝑎2 would become excessively large 

which has not be observed in nature. Thus, this implies  
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that there is a minimal limit for masses 𝑚𝑎1 and 𝑚𝑎2 in the quantum and/or 

subatomic realm. This size is determined by the Heisenberg uncertainty principle  

(∆𝐸∆𝑡 ≥ ħ); the uncertainty in energy ∆𝐸  is set equal to 𝑚𝑎𝑐2 (∆𝐸  =𝑚𝑎𝑐2), where 

mass 𝑚𝑎 represents mass values 𝑚𝑎1 and 𝑚𝑎2. Measuring from a unit of time, the 

uncertainty in time ∆𝑡 assumes a value of 1 second (∆𝑡 = 1𝑠) which is a value of 

choice, therefore, one obtains the expression:(𝑚𝑎𝑐2)(1𝑠) ≥ ħ. Solving the 

inequality for mass 𝑚𝑎 gives an inequality such that: 

𝑚𝑎 ≥
ħ

𝑐2                                                      (59) 

Conclusively, the minimum value permitted for each individual value of masses 

𝑚𝑎1 and 𝑚𝑎2 of mass product 𝑚𝑎1𝑚𝑎2  is expressed by Eq.59 above which has a 

calculated value of approximately 7.36 × 10−33𝑒𝑉/𝑐2 (𝑚𝑎 ≥ (7.36 × 10−33𝑒𝑉/
𝑐2)). Thus, in continuing with the theoretical description, for an observer spatially 

measuring the phenomenon in 𝑅𝜇   degrees of freedom, the unit vector 𝑢 in 𝑅𝜇 (𝑢 ∈
𝑅𝜇 ,   |𝑢| = 1) is applied to momentum value 𝑝 of Eq.57 such that:  

                                                                  

𝑝ц = 𝑝𝑢 ≡
𝑢

𝑐
[[

1

𝑟0
2] [

(𝛾𝑎)3

3𝐺𝑚𝑎1𝑚𝑎2 
] +

𝐺𝑚𝑎1𝑚𝑎2 

𝛾𝑎
]                                        (60) 

Therefore, the momentum 𝑝ц in ц spatial dimensions (𝑝ц ∈ 𝑅𝜇) is given by Eq. 60 

above. Due to the wave-like characteristics of the quantum world, the wave number 

𝑘𝜇 (𝑘ц ∈ 𝑅𝜇) can be expressed in terms of the IGEA such that [11]: 

 

𝑘𝜇 =
𝑝ц

ħ
≡

𝑢

ħ𝑐
[[

1

𝑟0
2] [

(𝛾𝑎)3

3𝐺𝑚𝑎1𝑚𝜇2 
] +

𝐺𝑚𝑎1𝑎 

𝛾𝑎
]                                         (61) 

Eq.61 above, allows the expression of dispersion relations between angular velocity 

ω and wave number 𝑘𝜇 (|𝑘𝜇𝑐|
2

= |ω|2) [6]. The mediating particle constitutes a 

free particle in space, hence, we acknowledge the complex plane wave equation and 

it conjugate at momentum value 𝑝ц and position 𝑥𝜇 (𝑥𝜇 ∈ 𝑅𝜇, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝑥𝜇| ≤

𝛾𝑎 ) such that [11]: 

 

𝛹 = 𝑒𝑖
𝑝ц𝑥ц

ħ                             𝛹∗ = 𝑒−𝑖
𝑝ц𝑥ц

ħ                                       (62) 

Substituting the value of momentum 𝑝ц of Eq.60 in wave functions 𝛹and 𝛹∗ of 

Eq.62 above give: 

𝛹 = 𝑒𝑥𝑝
𝑖𝑥𝜇

ħ
[
𝑢

𝑐
[[

1

𝑟0
2] [

(𝛾𝑎)3

3𝐺𝑚𝑎1𝑚𝑎2 
] +

𝐺𝑚𝑎1𝑚𝑎2 

𝛾𝜇
]]                                    (63) 

𝛹∗ = 𝑒𝑥𝑝 [−
𝑖𝑥𝜇

ħ
[
𝑢

𝑐
[[

1

𝑟0
2] [

(𝛾𝑎)3

3𝐺𝑚𝑎1𝑚𝑎2 
] +

𝐺𝑚𝑎1𝑚𝑎2 

𝛾𝑎
]]]                                (64) 
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At this juncture, we are mathematically prepared to give a complete quantum 

expression of the IGEA mediating particle which appropriately includes field 

theory. The goal is to describe a gravitational interaction within the quantum realm. 

The IGEA mediating particle describes gravitational interactions that include the 

inverse variations of dark energy which is the energy of expansion, hence, the 

interaction Langrangian 𝐿𝑖𝑛𝑡 describing the IGEA mediating particle is the same as 

the one formulated for the theoretical graviton. The interaction Langrangian 

formulated to describe the theoretical graviton as expressed by Holstein [3] is given 

such that: 

 

𝐿𝑖𝑛𝑡 = −
1

2
𝜅𝑇𝜇𝑣ℎ

𝜇𝑣                                                      (65) 

 

 

Where κ is the coupling constant which relates to Newton’s gravitational constant 

G such that: κ2 =  32πG [3]. The gravitational field tensor ℎ𝜇𝑣 [2] is typically used 

in describing the variations in the geometry of space-time due to gravitational 

waves, therefore, this indicates that the IGEA mediating particle is the quantum 

vibration of space-time between masses 𝑚𝑎1 and 𝑚𝑎2. The gravitation field tensor 

ℎ𝜇𝑣 is expressed in terms of tensor 𝐴𝜇𝑣 and the IGEA wave function 𝛹 of Eq. 62 

such that [3]: 

 

ℎ𝜇𝑣 = 𝐴𝜇𝑣𝛹                                                       (66) 

Gravitational interactions are typically described within the Traverse traceless 

gauge (The TT gauge) [2]. Hence the matrix 𝐴𝜇𝑣 of Eq.66 has a value associated 

with the TT gauge given such that [2]: 

 

𝐴𝜇𝑣 = [

0      0     0     0 
0    𝐴𝑥𝑥 𝐴𝑥𝑦  0

0  𝐴𝑥𝑦 −𝐴𝑥𝑥 0

0      0     0    0

]                                                 (67) 

As expressed in the interaction [9], 

 

ℎ𝜇𝑣 = 𝜂𝜇𝑣ℎ𝜇𝑣                                                            (68) 

Where 𝜂𝜇𝑣 is the Minkowski flat metric[9], we observe the stress-energy-

momentum tensor 𝑇𝜇𝑣 of graviton interaction Lagrangian 𝐿𝑖𝑛𝑡 of Eq.65 expressed 

in terms of a scalar field  (e.g. 𝜙(𝑥ц) ) has a value such that [3]: 

 

𝑇𝜇𝑣 = 𝜕𝜇𝜙(𝑥ц) 𝜕𝑣𝜙
† (𝑥ц) + 𝜕𝜇𝜙† (𝑥ц) 𝜕𝑣𝜙(𝑥ц) − 𝑔𝜇𝑣[𝜕𝜇𝜙(𝑥ц)𝜕

𝑣𝜙† (𝑥ц) − 𝜙(𝑥ц)𝜙
† (𝑥ц)𝑚

2]        

(69) 
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The stress-energy- momentum tensor 𝑇𝜇𝑣 is defined on linear manifold 𝑀 that is a 

subspace to a complex Hilbert space ɧ (𝑀 ⊂ ɧ ∪

𝐶;  𝐶 𝑏𝑒𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 [1], therefore, the scalar fields 𝜙(𝑥ц) 

and 𝜙† (𝑥ц) constitute complex quantum fields which serve as a differentiable 

manifold of space-time. In terms of quantum field theory, the continuous scalar 

fields  𝜙(𝑥ц) and  𝜙† (𝑥ц) are the particle and anti-particle fields which have a 

form [4]: 

 

 

𝜙(𝑥ц) = ∫
𝑑𝑘𝜇

√2(2𝜋)3
𝑢̅𝑓(𝑘)𝑎̂†𝛹 + ∫

𝑑𝑘𝜇

√2(2𝜋)3
𝑣̅𝑓(𝑘)𝑏̂𝛹∗                    (70) 

 

And [4],  

 
 

 

𝜙† (𝑥ц) = ∫
𝑑𝑘𝜇

√2(2𝜋)3
𝑢̅𝑓(𝑘)𝑏̂†𝛹 + ∫

𝑑𝑘𝜇

√2(2𝜋)3
𝑣̅𝑓(𝑘)𝑎̂𝛹∗                      (71) 

 

The wave function 𝛹 and its complex conjugate  𝛹∗ within field functions 𝜙(𝑥ц) 

and 𝜙† (𝑥ц) of Eq. 70 and Eq.71 are of the form of the IGEA wave functions of Eq. 

63-64 [10]. Eq. 70 and Eq.71 show that the IGEA mediating particle is a field with 

wave-like variations. Where the notation 𝜕𝑎 in Eq.69 is the vector valued partial 

derivative or gradient vector of the form: 

 

𝜕𝑎 =
𝜕

𝜕𝑥𝑎
                                                      (72) 

As shown in the Klein-Gordon term (𝜕𝜇𝜙(𝑥ц)𝜕
𝑣𝜙† (𝑥ц) − 𝜙(𝑥ц)𝜙

† (𝑥ц)𝑚
2) of the 

stress-energy-momentum tensor 𝑇𝜇𝑣 of Eq.69, the contravariant vector 𝜕𝑣𝜙† (𝑥ц) 

relates to the covariant vector 𝜕𝑣𝜙
† (𝑥ц) via the Minkowski metric 𝜂𝜇𝑣such that 

[9]: 

 

𝜕𝑣𝜙† (𝑥ц) = 𝜂𝜇𝑣𝜕𝑣𝜙
† (𝑥ц)                                         (73) 

 

Gravitons are spin 2 paticles, therefore, the spinors of  𝑢̅𝑓(𝑘) and 𝑣̅𝑓(𝑘) corresponds 

to the matrices 𝛼 for spin 2 particles of the value [4][5]: 
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𝛼 𝑥 =

(

 
 

0    2    0    0    0

2    0    √6    0    0

0   √6    0    √6    0

0    0     √6    0    2
0    0    0    2    0 )

 
 

,    𝛼 𝑦 =

(

 
 

0   − 𝑖2    0    0    0

𝑖2    0   − 𝑖√6    0    0

0    𝑖√6    0   − 𝑖√6    0

0    0    𝑖√6    0  − 𝑖2
0    0    0    𝑖2    0 )

 
 

  ,            (74) 

 

 

𝛼 𝑧 =

(

 
 

2    0    0    0    0
0    1    0    0    0
0    0    0    0    0

0    0    0   − 1    0
0    0    0    0   − 2)

 
 

 

The value of spinors 𝑢̅𝑓(𝑘) and 𝑣̅𝑓(𝑘) within scalar fields 𝜙(𝑥ц)  and 𝜙† (𝑥ц) 

adhere to the relationship of [4][5]: 

 

𝑘𝜇 • 𝛼 + 𝐸 + 𝑚 = 0                                               (75) 

 

Where wave number 𝑘𝜇 is an element of three space real numbers (𝑘𝜇 ∈ 𝑅3), 𝐸 

denotes rest energy, and  𝑚 denotes the rest mass; the values of spin 2 particle 

spinors 𝑢̅𝑓(𝑘) and 𝑣̅𝑓(𝑘)   are therefore given by [4][5]: 

 

𝑢̅1(𝑘) = 𝑁𝑝

[
 
 
 
 
 
 

2𝑘3

𝐸+𝑚
𝑘3+2(𝑖𝑘2+𝑘1)

𝐸+𝑚

𝑘1√6

𝐸+𝑚

0
1 ]

 
 
 
 
 
 

                     𝑢̅2(𝑘) = 𝑁𝑝

[
 
 
 
 
 
 

2𝑘1+𝑖𝑘2

𝐸+𝑚

√6(𝑘1−𝑖𝑘2)

𝐸+𝑚

−𝑖𝑘2√6

𝐸+𝑚

1
0 ]

 
 
 
 
 
 

             (76)                 

 

 

𝑣̅1(𝑘) = 𝑁𝑝

[
 
 
 
 
 
 

1
0

𝑘1√6

𝐸+𝑚

√6(𝑘1−𝑖𝑘2)

𝐸+𝑚
2(𝑘1−𝑖𝑘2)

𝐸+𝑚 ]
 
 
 
 
 
 

                  𝑣̅2(𝑘) = 𝑁𝑝

[
 
 
 
 
 
 

0
1

−𝑖𝑘2√6

𝐸+𝑚
2(𝑘1−𝑖𝑘2)

𝐸+𝑚
2𝑘3

𝐸+𝑚 ]
 
 
 
 
 
 

              (77)                 

 

Where 𝑁𝑝 indicates the normalization condition. Therefore, in continuing to define 

the components of the scalar field functions 𝜙(𝑥ц) and 𝜙† (𝑥ц), the creation 

operators (𝑎̂†, 𝑏̂†) and the annihilation operators (𝑎̂, 𝑏̂) of field 𝜙(𝑥ц) satisfy the  
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properties of bosons [5] [8] [10]. The creation and annihilation operators have the 

commutator properties such that [5] [10]:  

 

[𝑎̂, 𝑎̂†] = 𝑎̂𝑎̂† − 𝑎̂†𝑎̂ = 𝛿                                                   (78)                   

[𝑏̂, 𝑏̂†] = 𝑏̂𝑏̂† − 𝑏̂†𝑏̂ = 𝛿                                              (79) 

[𝑎̂†, 𝑎̂†] = [𝑎̂, 𝑎̂] = 0                         [𝑏̂†, 𝑏̂†] = [𝑏̂, 𝑏̂] = 0                          (80) 

 

And [5], 

𝑎̂†𝑎̂ = 𝑏̂†𝑏̂ = 𝑛                                                           (81) 

 

 

Where 𝑛 denotes an arbitrary number. Lastly, the metric tensor 𝑔𝜇𝑣 presented in the 

stress-energy-momentum tensor 𝑇𝜇𝑣 of Eq. 69 is the sum of the Minkowski metric 

𝜂𝜇𝑣 and the gravitational tensor field ℎ𝜇𝑣 of Eq.66 multiplied by a coupling constant 

𝜅 such that[3]: 

 

𝑔𝜇𝑣 = 𝜂𝜇𝑣 + 𝜅ℎ𝜇𝑣                                                                (82) 

Which constitutes a 4 by 4 matrix. The interaction Lagrangian 𝐿𝑖𝑛𝑡 of Eq. 65 

encompasses the dynamics within a complete quantum description of the IGEA 

alternative to the Graviton. 

 

Conclusion 
   

The advantage of the IGEA that is conveyed in both papers is that the concept can 

be applied on the cosmological level as well as the subatomic. This advantage is 

warranted by the assertion’s ability to show consistency and compatibility on an 

observational and mathematical basis in reference to known phenomena.  
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