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Abstract

We prove the existence of a weak solution for the Cauchy problem
associated with a 2 x 2 symmetric system of Keyfitz-Kranzer type with
linear damping.
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1 Introduction

The following system of partial differential equations

uy + (ugzﬁ(r))x =0
{vt + (06(), =0, -y

where ¢(r) is a nonlinear symmetric function of w and v, is a 2 x 2 symmetric
system of Keyfitz-Kranzer type.

A system of the form (1.1) was first introduced in [6] by B. Keyfitz and H.
Kranzer as a model in elasticity theory. Also, this type of system appear in
magnetohydrodynamics, chromatography and enhanced oil recovery [1, 4, 7].

Symmetric systems of Keyfitz-Kranzer type have been studied by many authors
1,2, 4,5,6,7,8,9].
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In this paper we shall apply the vanishing viscosity method together with
the Murat’s lemma and the div-curl lemma, to study the Cauchy problem for
the 2 x 2 symmetric system of Keyfitz-Kranzer type with linear damping

up + (ugzﬁ(r))ac = —au
{vt T — (1.2)

with bounded measurable initial data

(u(z,0),v(z,0)) = (uo(z), vo(x)), (1.3)

where ¢(r) € C*(RT) and ¢(r) is strictly increasing or decreasing for positive
r, a,b are constants such that b > a > 0 and

r=lul* + [0l (1.4)

for any o > 1 fixed.
From [3], we see that the system (1.2) has eigenvalues

A=0(r) +ard(r), A= o(r),

and Riemann invariants

z(u,v) = U, w(u,v) = ¢(r). (1.5)

2 Existence of Weak Solution

We consider the Cauchy problem for the system

(2.1)

u§ + (up(r9)) | = —au + eus,
vf + (vegzﬁ(rg))gc = - + eV’ ,

with initial data (1.3).

Lemma 2.1. For any € > 0 and any T > 0, we have the a-priori bounds for
the Cauchy problem (2.1)-(1.3)

lu(z, )| < M(T), |z, t)| < M(T), (x,t) € Rx[0,T], (2.2)
for a positive constant M (T') independent of e.

Proof. We multiply the first and second equations of system (2.1) respectively
by alu|*"2u and a|v|*~?v, adding the results, we obtain

re + M7 + acju|® 4 ba|v|® = ery, — ea(a — 1) <|u|0‘_2ui + |U|a_2vi>. (2.3)
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We have from (2.3) the inequality
e+ ANy + aor < erg,. (2.4)

Applying the maximum principle to (2.4) we get the estimate r¢ < N(T),
where N(T') is a positive constant, being independent of e. Estimate from
which we obtain the a-priori bounds in (2.2). O

A consequence of the previous lemma is the following.

Corollary 2.2. For e >0 and T > 0 the viscosity solution (u(z,t),v*(z,t))
for the Cauchy problem (2.1)-(1.3) exists on R x [0,T].

Lemma 2.3. If uy(z) > ¢, for a positive constant c,, then
u(z,t) > c(t,e, ¢) >0, (2.5)
where c(t,€,c,) could tend to 0 ast — 400 or e — 0.

Proof. We set v = —Inwu and deduce from the first equation of the system
(2.1) that

(6(r))”

U — Uy < ~—— + (1), + a.
€
Then using the previous inequality, we obtain

e_4e2t+/0t (% (¢(r))2+¢(7“)m+a> %,

1 2

i,
dem(t — s)

(x). Hence

N, t
v(z,t) < —Ine, + —t+N2\/j.
€ €

It follows that

N, t
u(z,t) > ¢ exp — (—t + NQ\/j> > c(t,e,¢;) > 0. O
€ €

Lemma 2.4. Let z be the Riemann invariant given in (1.5). If in addition
to the assumption of lemma 2.3, z,(x) = z(x,0) € L®(R) and z\(x) € L*(R),
then (%)(z,t) € L®(R x [0,T]), (%),(-,t) € L'(R). Moreover

TV((Z_z)(.,t)> :/_+m‘<5—z>x(x,t)‘dx§/_;w‘<5—g>/(x)‘das:TV(<Z—E>(:U)),

o0

where TV is the total variation.
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Proof. Multiplying the first equation of (2.1) by —=; and the second equation
by % and summing them up, one obtains

(0) () om0, e

Ve

Appliying the maximum principle to (2.7), we thus find that (%)(z,t) €
L>*(R x [0,7]). Now we differentiate (2.7) with respect to z and then we
do 0 = (%)x to get

0+ (¢(r)0)_ + (b—a)d = lpr + (2eu™ ' u0)

x’

multiplying this equation by the sequence of smooth functions ¢'(6, «), where
« is a parameter, we obtain

9(8, a)+(o(r)g(8, a)) +6(r), (4 (0, )0—g(6, ) +(b—a)g (8, )0, = €9 (6, O)a
—€g"(0, )02 + (2eu"uyg(b, a))x + (26u_1uz)x(g'(9, a)f —g(0,0)). (2.8)

We choose ¢(6, a) such that ¢"(0,a) > 0, ¢'(0,«) — signd and g(0,a) — |0|
as a — 0, we have from (2.8)

0] + (&(r)[0]), < €lOlaw + (260 uz]0)) (2.9)

2"

Integrating (2.9) in R x [0, ¢], we obtain (2.6). O

We establish the results related to compactness in H, ! that allow us to
apply the div-curl lemma.

Lemma 2.5. We assume the same conditions given in the Lemma 2.1. Then

re 4+ (/T (o(s) + asg/(s)) ds) (2.10)

is compact in H,' (R x R*).

Proof. We rewrite (2.3) as

re+ (/r (0(s) + asd(s)) ds) = €ry, — ea(a — 1)(\u]a_2ui + \v\“‘%i)

T

— a(alul® + blv]*). (2.11)

Noting that the last term in the right-hand side of (2.11) is bounded in Lj, (R x
RT) and using the same type of argument given in Lemma 5 of [3], we obtain

the conclusion of the lemma. OJ
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Lemma 2.6. Under the assumptions of Lemma 2.1, it follows that
is compact in H;,' (R x R*).
Proof. Multiplying the equation (2.3) by ¢(r) + ar¢’(r), we obtain

(/T (gb(s) + ozS(b’(s)) ds)

+ard/(r)) - eala = 1) (Jul 22 + [0~ 22) (o(r) + arg/ (1))
— a(alul® + blo|*) (¢(r) + arg/(r)), (2.13)

€ €

(6(s) + asg(s))” ds> (2.12)

xT

(6(s) + asd'(s)) ds>

t

+ (/ ((s) +as¢’(8))2d8> = eraa(9(7)

T

Le(RxRT), we conclude that (2.12) is compact
in H, (R x R*) by following the proof given in Lemma 6 of [3]. O

loc

as the last term is bounded in L}

Lemma 2.7. Suppose the conditions of Lemma 2.4 holds. Then

((uﬁ)“)t + (We)“ / . (6(s) + s/ (s)) ds> (2.14)

r€
is compact in H;, ' (R x R*).
Proof. The first equation of the system (2.1) can be written as
e+ g (6 (ul*0) + alul 0 (ul*0) ) = ety — ful*upyd (Julg) — au, (2.15)

where the auxiliary function ¢(x,t) is defined by

: (2.16)

by Lemma 2.4 ¢(-,t), is bounded in L'(R). Multiplying the above equation
by a|u|*"?u, we obtain

et (ur_a /r (6(s) + asd/(s)) ds) =e(u”),  —ea(a—1)u?ul

T

« 2 [0 «
— a(u®) . (u¥p) — aalul®, (2.17)
the term aa|u|® is bounded in L}

Le(R x RT). We skip the rest of the proof
since the result is derived by following exactly the same proof of Lemma 7 in
3]. O
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Lemma 2.8. Let the assumptions in Lemma 2.4 hold. Then

uj + (uégb(rﬁ))x (2.18)

is compact in H;,' (R x R*).

We skip the proof of this lemma since it is similar to the one exposed to
establish Lemma 8 in [3].

Corollary 2.9. Suppose the conditions of Lemma 2.4. Then we have
ug + (uegb(rE) + —) (2.19)

is compact in H_ ' (R x RT).

The proof of the following result is an easy adaptation of the proof given
in (3], Lemma 10.

Lemma 2.10. Assuming the hypotheses as in lemma 2.4, then

v+ (vo(r)) (2.20)

is compact in H;,} (R x R*).

Corollary 2.11. Suppose the conditions of Lemma 2.4. Then we have

o+ <v6¢(r6) + (3)2) (2.21)

is compact in H,' (R x R*).

Lemma 2.12. When the assumptions of Lemma 2.1 are satisfied and
meas{r: (2n+ 1)¢'(r) + 2nr¢"(r) = 0} =0, (2.22)

then there exists a subsequence of {r¢(x,t)} which converges pointwisely.

Proof. We use the div-curl lemma, which can be applied to the functions (2.10)
and (2.12) (for more details see [3], Lemma 12). O

Lemma 2.13. Assume the hypotheses of the lemmas 2.4 and 2.12, then there
is a subsequence of {u(x,t)} which converges pointwisely.

Proof. The proof is the same to that of Lemma 13, [3]. O
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Lemma 2.14. Under the assumptions of lemma 2.13, there is a subsequence
of {v°} such that it converges pointwise.

Proof. The proof is the same as for Lemma 14 in [3]. O
Theorem 2.15. Suppose that (2)(z) € L*(R), (”—O)l(w) € LY(R), o(r) is

vo
uo uo
strictly increasing or decreasing for positive v, ¢(r) € C*(R") and meas{r :
(2n+1)¢' (r)+2nr¢”"(r)} = 0. Then there exist a subsequence of (u,v®) which

converges pointwisely and the limit is a weak solution of the Cauchy problem
(1.2)-(1.3).

Proof. We consider the sequence of viscosity solutions (uf,v¢) of the system
(2.1). Let us consider ¢, € C5°(Rx[0,00)). By multiplying the first equation
of the system (2.1) by ¢, the second by 1, adding the resulting equations and
integrating by parts in R x [0,00), we obtain that u® and v satisfy the weak
formulation of the Cauchy problem (2.1)-(1.3),

+oo
/ / (upr 4+ ud(r)p, — auy) dt dx + / uop(z,0) dx
R Jo

R

+ /R /0+<>° (v + v°P(r )iy — bu ) dt d + /R vt (2, 0) dz =
+o00
B 6/R/O (U ra + V) dit d . (2.23)

By Lemmas 2.12, 2.13 and 2.14, we can find a subsequence of (uf,v¢) (no
relabeled), which converges pointwise, a. e. (z,t) € R x [0,T], to (u,v) and it
is such that r¢ — |u|* + |v]*, a. e. (z,t) € R x [0,T]. Since ¢ is continuous,
o(re) = o(Jul® + |v|*), a. e. (z,t) € R x [0,T].

Note that by (2.2),

+o0
6// U Py dt dx
R Jo

thus we obtain

<lipmllim [ fuldtds
supp(y)

< eN(T) <mea5 (supp(y)) ) ,

“+o0o
lime// U Py dt dx = 0. (2.24)
RJO

e—0
Using the above argument we also have

+o0
lime// VY, dt dx = 0. (2.25)
R Jo

e—0

We want to pass to the limit the weak formulation (2.23) to complete the proof.
From (2.24) and (2.25), it follows immediately that the integral on the right-
hand side of (2.23) converges to 0 as e — 0. Due to the convergence almost
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everywhere, we can apply the Lebesgue dominated convergence theorem to
(2.23) to obtain that (u,v) is a weak solution of the Cauchy problem (1.2)-

(1.3). O
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