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Abstract

This article presents an analysis of the chaotic dynamics presented by
the Lorenz system and how this behavior can be eliminated through the
implementation of sliding mode control. It is necessary to know about
the theory of stability of Lyapunov to develop the appropriate control
that allows to bring the system to the desired point of operation.
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1 Introduction

Chaotic behavior has been analyzed in a variety of engineering systems. The
main characteristic of these systems is the extreme sensitivity to the initial
conditions, that is, a small variation in the initial state will cause a departure
from the trajectories in the state space. The chaotic behavior is irregular,
complex and undesirable for some engineering systems, as it causes low per-
formance and can be very destructive, for this reason it is necessary to know
when the system enters this state of chaos and if it does, how to recover it .
Hence, the analysis and control of nonlinear dynamic systems has taken great
importance in recent decades [1].

The most analyzed system has been the model of the Lorenz equations,
which is considered a paradigm since it is a simple model that has chaotic
characteristics depending on its parameters. In the literature there are sev-
eral studies on the control of chaotic systems. Vicent and Yu [2] developed a
Bang-Banga controller that regulates the chaotic system to one of its unstable
points. Ott, Gebogi and Yorke [3] proposed techniques that allow converting
the movement of the strange attractor into periodic oscillations. Hartley and
Mossayebi [4] have proposed classical control models, which lead to undesir-
able chaotic transients in the system. Alvarez Gallegos [5] obtained interesting
results from the linearization of feedback based on the theory of nonlinear geo-
metric control. In 1997, Zeng and Singh, used an adaptive control law to drive
the chaotic system to a specific point in the state space [6].

In this paper, it is based on the application of control by sliding planes,
to eliminate the chaotic behavior of the Lorenz system and to take the trajec-
tories of the phase space to a particular point, which was taken as the point
of equilibrium. To fulfil this objective, section two deals with the description
of the Lorenz system and the presence of chaotic characteristics for certain
values of its parameters. Section three addresses the issue of the stability of
Lyapunov as this methodology leads to the development of the control tech-
nique by sliding planes. Finally, section four shows the results obtained and
their respective analysis.

2 Chaos in the Lorenz system

The Lorenz equations are a simplified model of an incompressible convective
air flow between two horizontal plates with a temperature difference, subject to
gravity. The motivation of these equations was to highlight why the climate is
unpredictable despite being a deterministic system. The model is the following:
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=o(y—z)
=(p—2)r -y (1)
z :xy—ﬂz,

where x is the fluid velocity; y is the horizontal temperature; z is the vertical
temperature; ¢ is the Prandtl number; p is the Rayleigh number and § is the
geometry factor. Here, we assume that the parameters o, p and § are known.
The Lorenz system presents a complex dynamics depending on the values of
its parameters, for values 0 < p < 1 the dynamics of the system is stable, while
for high values of p, the dynamic behavior becomes chaotic. For example, with
values of ¢ = 10, p = 28 and § = 8/3, unpredictable dynamics are obtained,
these values being the most common for the analysis.

The visualization of the chaotic behavior in said system is obtained by
simulation by Matlab. Figure 1 shows the strange attractor generated by this
dynamic and Figure 2 shows the time series of each of the state variables.
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Figure 1: Lorenz attractor.

3 Analysis and control for the Lorenz system

3.1 Determination of the equilibrium point
Now, from the system (1) we obtain
Le +v/B(p—1)

Ye | = | £V B(p—1)
Ze p—l
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Figure 2: State variables.

The local stability of this point can be determined by linearization around
it and calculating the characteristic polynomial in the following way [7]:

—0 o 0
(DeF) (@) = |p—2 —1 —x. (2)
Ye Le _B

AN — (DzF) (@) =N+ (B+o+ DN+ (B+a2+ 1+ (B+p+2)0))
+ (B = Bp+ a0 + Teyeo + fze0) (3)
For the values of the parameters taken in this article, the eigenvalues are

A1 = —3.381 and A\y3 = —5.142 £ 24.312, that is, the equilibrium point is
asymptotically stable.

3.2 Stability by Lyapunov and control by sliding planes

The theory of stability is based mainly on the theory of Lyapunov, which pro-
poses two methodologies for the determination of it. The first of these is the
indirect methodology, which is based on finding the transfer function of the
system and finding the poles of that function, which must belong to the left
complex half-plane so that the system is asymptotically stable.

The direct methodology consists in the construction of a function that
fulfills 3 conditions, called the Lyapunov function, these conditions are the
following:

o V(z,)=0
o V(Z¥)>0VZ#u,
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e V (¥) < 0 along the trajectories of & = f(z).

By means of this direct Lyapunov methodology, the sliding surface can be
defined to apply the control. This is defined as:

o (%) =1z + caxe + ... + chy (4)
A candidate Lyapunov function can be
— 1 —
V(&) = 50 )

Now, by deriving Equation. (5) the third condition of stability will be
shown [8]:

V (Z) = o(¥)o (). (6)
Therefore, realizing the substitution xt = x — 2., y =y — y. and z = z — 2,
we have the following function of Lyapunov for the Lorenz system:

V= (Cl (l’ - xe)Q + co (y - ye)2 + c3 (Z - Ze)2> (7)

V=ci(z—z)i+c(y—ye)y+cs(z—2) 2 (8)

The new Lorenz system with the application of open loop control for the
elimination of chaotic dynamic behavior, will be the following:

T =o0(y—x)+ut)
gy =p—2)r—y+ul) (9)
Z =uzy— Pz +us(t),
where uy (t), us (t) and us(t) are external control excitations. This control in
open loop has certain restrictions regarding the determination of the control

parameters, for this reason it is convenient to apply control in closed loop since
the number of parameters is reduced, leaving the system:

i =o(y—ux)
y =(p—2)r—y+uz,y,2) (10)
2 =uxy— Bz

From the system in (10) the control law can be determined, replacing (10) in
(8) and forcing V' (Z) to be less than zero for all cases except at the equilibrium
point. Said control law will be:

us = —nsign (o (Z)) — g + sin(27 * t), (11)

where o () =y — ye.
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4 Analysis of results

In this section we will show the results obtained when applying the control by
sliding planes to the Lorenz system. The parameters used are those mentioned
in section two, with which the equilibrium points are obtained:

Te 8.4853
Yo | = |8.4853
Ze 27

It is expected that the trajectories of the system in the phase space tend to
equilibrium point. The simulation was implemented in Matlab using the func-
tion ode4b for the solution of the system of non-linear differential equations.
The results are shown in Figures 3 and 5, where each of the state variables is
shown for a value 7 between [100-300].
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Figure 3: State variable x(t).
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Figure 4: State variable y(t).

Here, it is possible to highlight a time that the system has a high con-
vergence to the expected operation points, besides the response time is good
considering that it is a model for the variation of the climate. On the other
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Figure 5: State variable z(t).

hand, the control signal is not very high, therefore, it would not be necessary to
have high values of voltage sources if one wanted to implement said simulation
by means of an electrical circuit [9]. This signal is shown in Figure 6.
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T

Figure 6: Control signal wus.

5 Conclusion

The characterization of the dynamics of any system allows the development
of adequate control techniques that lead the trajectories of the system in the
phase space to the desired point of operation. The technique of sliding mode
control is easy to implement for any type of dynamic system, since it is de-
rived from Lyapunov’s direct stability methodology. In addition, it provides
very good results when compared to classical control techniques.
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