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Abstract

There are techniques of the fields theory that can be applied to
study the dynamics of a production system described from a Lagrangian,
which is a function of the variables (g, ¢), coordinates of a given con-
figuration space. These techniques allow a more general and abstract
application than those used by other formalisms from physics, thus giv-
ing the possibility of studying the dynamics of various models. In ad-
dition, they are an effective tool to obtain more detailed information of
the model. Today many of these techniques are applied in classical me-
chanics, quantum mechanics, particle physics, condensed matter, and
in statistical physics models. In this paper they will be presented as
an alternative geometric formalism for the study of the dynamics of an
economic productive system.
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1 Introduction

To model the dynamics of a production system, different theoretical frame-
works of physics have been defined and used (M. Estola 2013 and M. Estola
and A.A. Dannenberg 2016), [1, 2, 3]. In the work mentioned, the dynamic of
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a production is modeled from Newton’s second law and the application of La-
grangian and Newtonian formalisms. In this paper, it is studied the dynamics
of the neo-classical theory (static equilibrium state), and show that this theory
corresponds to the particular case of the mentioned formalisms (zero force).

Indeed, since physics the static versions of the models must be a particular
case of the dynamic version. On the other hand, the coherence between the
Newtonian and Lagrangian formalisms is an absolutely necessary condition,
since they are equivalent formalisms and the equations that they define have
equal physical meaning when describing the dynamics of a system. The works
of M. Estola et al., achieve this clearly. These properties, derived from physics,
are critical to the consistency of the application of these formalisms in the
description of any model.

It is important to mention that, in order to follow the reasoning and the
way of constructing exact arguments used by physics, [4], the meanings of the
co-related magnitudes between physics and economics, such as forces, inertial
masses, velocity, acceleration (of accumulation of a good), and kinetic and
potential energy, have a fundamental weight for the development of consistent
ideas. It is possible that this set of concepts, definitions and procedures do not
have the same argumentative weight as in physics, and not belonging to the
field of pure mathematics, but they may have general application to a given
number of different models, that is, to have a certain universe of application.

In economics it is possible to define intuitive dynamic principles, since
economic units, in spite of their free will to operate, are constrained by their
own will reaching the goals they have set themselves and to be consistent
with their objectives. When studying the dynamics of a system, this type of
reasoning allows to associate argument and tools from physics.

I. Fisher (2006, original work in 1892) in his doctoral thesis proposes a
vector formulation for economics, being the first published work where the
correspondences between physics and economy, [5], are explicitly defined.

In the description of the dynamics of a system there are different approaches
or formalisms. Newton’s second law studt the evolution of a particle in time
from the knowledge of the initial conditions and forces acting on it, stating
that the trajectory that describes in its movement is that which minimizes its
energy. While the Lagrangian formalism (or Hamiltonian formalism) contains
all the physical information of the state and the forces acting on the system
from the knowledge of the kinetic and potential energies expressed in a function
called Lagrangian (polynomial function). The temporal evolution in this case
is obtained by means of the integral in time of the Lagrangian, called the
function action (S). Action in physics is an abstract concept containing all the
dynamic information and interactions of the system. The temporal evolution
takes place through a trajectory in which S has an extreme (a minimum).

In this sense, and with a more general vision coming from the fields the-
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ory, it would be possible to model the dynamics of any system that can be
described from a trajectory in coordinates (g, ¢) of a given configuration space
6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. By correctly defining the Lagrangian of
the model, which, as already mentioned, contains the kinetic or free terms
(bi-linear terms in ¢) and the interaction terms of the system, through the
application of techniques from the fields theory, it is possible to obtain the
equations of motion, the Feynman rules and the diagrammatic of the model
(schematization of the dynamics of the system). It is important to remark
the importance of the correct definition of the concepts of kinetic (Ec) and
potential (Ep) energies of the productive economic system in consistency with
the conceptualizations from physics, as generators of the dynamics.

M. Estola et al. (2016) agree with I. Fisher (2006) that economic kinematics
can be described as the position of an economic quantity according to the
movement of a representative point in a coordinate system (economic quantity
of coordinates (q, q*) in a configuration space), from:

Qilt) = Qo(t) + [ ai(s) ds M

M. Estola et al., add to this idea the existence of factors that resist the
changes of these economic quantities, modeling these inertia according to the
definitions of physics, defining forces and ”inertial masses” of economic mag-
nitudes.

Today, the real economies are considered as complex dynamic systems in
which they happen and accumulate small random events that select the final
result. Time enters naturally here via the processes of adjustment and change:
As the elements react, the aggregate changes; as the aggregate changes, ele-
ments react anew. One way to approach this is to adopt the perspective of
complexity, emphasizing the formation of structures (their dynamics) rather
than their existence. At the same time, when the models of prediction adopted
are not obvious, and must be formulated individually by the intervening agents,
who are also not aware of the expectations of other agents, the study and mod-
eling of their dynamics uses tools from the more specific physics according to
each type of system (or model). These properties have counterparts in nonlin-
car physics where there are similar positive feedbacks, (W.B. Arthur) [16].

Undoubtedly, this generates a complex system whose dynamics is not easy
to handle if it is not possible to clearly define the variables (g, ¢) of the con-
figuration space where the evolution of each constituent element of the model
is described. That is, it is defines properly the elements (or agents) and in-
teractions of the economic model, as is done in physics with particles and the
physical system.

This work presents and analyzes the possibility of applying a more general
technique, typical of field theory such as external canonical formalism (FCE),
to the study of the dynamics of a productive economic system.
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The FCE plays an important role, because of its more simple and compact
structure. In particular, the FCE can be used as an interesting geometrical
formalism to derive and analyze the dynamic.

On the other hand, the FCE does not define a standard mechanical system
in the sense that it is not proper Hamiltonian theory as others formalism,
which propagates data defined on an initial surface . The first question is
that in the construction of the FCE, the "form” brackets are introduced and
they must be related to the usual Poisson brackets defined in others formalism.
Besides, it must be pointed out that the FCE takes the exterior derivative as
a form-observable, which does not have direct analogue. Thus, in the FCE the
first class dynamical quantity defined as the Hamiltonian density is not the
Hamiltonian which generates the time evolution of generic functionals (fields).
However, this can be corrected as will see in practice taking in the FCE some
field equations of motion as constraints.

Other motivation to consider this kind of theories is due to the fact that
by adding terms highly derived in the Lagrangian, they can be meant for
regularizing divergences in the theory. On the other hand, the second order
formalism is unavoidable to address the study in other framework.

2 Preliminaries and definitions

In the first order of this geometrical formalism the dynamics is described by the
1-form fields ¢ = (V4 w®), where the index A = (a, ab). The fields V¢ and
w® play the role of the coordinates of a configuration space. So, VV* represents
a given quantity, and w® is a field of geometric origin (in gravity, the dreibein
and the Lorentz spin connection, respectively). The 2-forms ¢4 = dg* play
the role of velocities. The curvature 2-forms corresponding to the above fields

are called R4 = (R%, R™), and are defined by:

1
R* =dg* — §CABC ¢ Ng”, (2)

where the graded structure constant C“ and the constant symmetric Killing
metric y4p are related by the equation:

Capc = vapC0 . (3)

The explicit expressions for the curvatures are written:

R*=dV*+w™ AV, (4)

R = dw™ + w™ Aw,”. (5)
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3 Lagrangian density £

The action in a three dimensional space (two spacial-one temporal) is defined
by means of a Lagrangian density (3-form) given by:

2
L = R® ANV ey + dw™ A wy — gwab A wy € A Weq (6)

where the usual Einstein-Hilbert term play the role of the "mass” term. The
other terms are viewed as the "kinetic” terms, in higher derivative (second
time derivative). An equivalent Lagrangian density is:

L = dV* A W e + dw™ A wyp

2
—gwab N Wy, CA wca‘l‘wad A Wy b A\ chabc s (7)

that differs of eq. (6) in a total derivative. The canonical momenta (1-forms)
74 conjugate to the 1-forms field variables ¢” obtained by the functional vari-
ation of the Lagrangian density (7) with respect to the 2-forms velocities
dg? = ¢* are given by:

oL
= —. 8
i Odg4 (8)
Therefore:
_ bc
g = W Egbe » (9)
Tab = Wab - (10)

The set of primary constraints can be obtained from the Lagrangian density
and they are the relationship between the field and momentum variables not
depending on the velocities:

(Da = Mg — wbc Eabe =~ 0 ) (11)

(I)ab = Tab — Wab =~ 0 ) (12)

where the symbol ~ implies weakly zero.

It is necessary to define a suitable operation involving forms with the help
of which the Hamiltonian equation of motion may be written. As it was shown
in [17, 18] the Poisson brackets yields more information than the form brackets.
They can be related by means of an integral relationship.

Starting from the Lagrangian (7) the canonical Hamiltonian can be defined:
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Hcan = qu/\ﬂ-A_‘C:

2
—w A Wyt A Ve + gwab A wy €A Weq - (13)

Therefore, the total Hamiltonian can be defined as follows [19]:

HT = %can_l'AA A (I)A =
ad b c 2 ab c
W Nwy,” ANV 5abc—|—§w A wy © N Wea
AT A (10 = W eae) + A A (T — W) (14)
where A4 = (A“, A“b) are the Lagrange multipliers.
Now, it is necessary to introduce the fundamental equation of motion in

the formalims, in analogy to classical mechanics, as was mentioned in the
introduction, the following equation involving the form-bracket is introduced:

dA = (A, Hy)+0A, (15)

where A = (¢, 7) is a generic polynomial in the canonical variables ¢* and
74 The operator 0 acts nontrivially on external fields only. Therefore, for the
canonical variables:

o¢t =0rA=0, (16)
and also for constraints:

0D,y =0. (17)

Considering the equation (15) we can write the following Hamiltonian equa-
tions:

qu = (qA ) HT) ; (18)
and taking into account the expression (14) for Hr, by straightforward calcu-
lation we find the following general results:

A A= dq A - (19)

It is also necessary to prove whether there are secondary constraints in the
theory. For this purpose, we must impose the consistency condition on the
primary constraints. We must use (15) for 4 and impose the condition:

d(I)A:((DA, HT) %O, (20)
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where (17) was used.
Computing explicitly the form-bracket appearing in (20), we arrive to the
general equation:

d® 4 = — [equation of motion| + (@A , AB> A Ap . (21)

As (CDA , AB) A ®p is a weakly zero trem, (21) implies the lack of sec-
ondary constraints in the FCE. Moreover, the equation (21) guarantees that
the Hamiltonian defined in (14) is a first class dynamical quantity. On the
other hand, by using (20) and after lengthy algebraic manipulations, we find:

APy = —R" eape + (P00, AY) A A, (22)

d@ab =-2 Rab — R Eabe T (qDab s AA) VAN AA . (23)

These results and properties can be obtained from the FCE in a general
form [17, 18].

4 Space-time decomposition

To obtain the proper Hamiltonian H of the theory, generator of the time
evolution of generic functionals, we must consider ¢* (1-form gauge fields)
written in the holonomic basis ¢4 = q;‘ dz*, with p = 0,1,2 and A = a, ab.
Thus, the proper Hamiltonian 7 is defined by (see eq. 14):

/HT:/mﬁAﬂ, (24)

where H can be written:

ﬁ:/ﬁ%mwﬁ:/@mu@+;%%w@>mi (25)

where ¢§' are the temporal components of the 1-form fields ¢**. We assume
that the primary constraints (11) and (12) in the FCE remain at least weakly
zero in the canonical component formalism [17, 18, 19]. On the other hand, in
an usual canonical component formalism, the components 74 of the momenta
vanish and define primary constraints [15]. In the FCE these vanishing compo-
nents do not even appear among the components of the momenta. The choice
of the time variable determines which components vanish. Consequently, when
in the FCE the forms are restricted to a t = 2° = constant surface, the time
components of the momenta do not appear. Therefore, we put 74 = 0 in
the primary constraints and Rj; with i = 1,2. Considering the restriction of
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(11) and (12) to the surface ¥ and according to what was assumed above, the
following prescription is made:

Poly = tha =0, (26)

(I)ab|2 = ¢ab ~0. (27)
Then, the explicit expressions for H(z) = H,(x) d*x are:

Ha(x) = _Rbc Eabe — CUZ A wb ~ 0 ) (28)

Hab<£lj') = —4 Ry — 2R + (V;, AN, =V, A Q/Jb) ~0, (29)

where the antisymmetric and weakly zero quantities,

My d*z = (Vo A g — Vo A aly) =0, (30)

appear directly as primary constraints because they are functionals of the
constraints ¥4, which are the restriction to ¥ of the primary constraint ® 4,
and they are the generators of the local Lorentz group of the theory. Note
that, in the context of this formalism, the appearance of the generators My, is
absolutely natural. By computing the form brackets between the constraints

(28) and (29) we find:

(7‘2,4, 7‘23) = CEB Hp + Wap (o, ¥) (31)

where W, are weakly zero 2-forms, functionals of the primary second-class
constraints ¢ 4. The equation (31) is very important because it shows that the
quantities defined in (28) and (29) are first class constraints in the Dirac sense.
So, we conclude that the proper Hamiltonian H defined in (25) can be written
as a linear combination of the set H 4 of first class constraints, corresponding
to invariances of the theory under local gauge transformations, which are the
two degrees of freedom of this theory.

5 Second-order Hamiltonian formalism

The higher derivative character of the theory, that makes it possible regularize
mathematical divergences, do not allow go over to the second order formalism
directly from the FCE. This is due to the presence of the second time deriva-
tives. We consider all the forms written the dreibein V* in the holonomic
basis as V* = L dz*. The indices p, v = 0, 1, 2 for space-time, and the indices
i,7 = 1,2 to label spatial components only. We define the metric tensor g,,
split in the shift function N+ and lapse function N;.
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The Lagrangian density we are able to construct the second-order formal-
ism, which is obtained by considering the following equation of motion.

R*=0. (32)

From the equation for this curvature, it can be obtained:

wzb =w (L), (33)
ary = 1L‘W o,L% —0,I° 1Lb” 9,L% —0,L°
wu()_§ (N V_Vu)_§ (H V_V},L)
1 a, g (4
—5L PL* (OyLge — 05 Lpe) L, . (34)

Therefore, the Lagrangian density only depends on the field V', once the
equation is used to eliminate w,;, as independent dynamical variable.

The Lagrangian density contains second times derivatives on the dreibein
components and because of the form of the term of the Lorentz-Chern-Simons
expression it is not possible to eliminate it by partial integration. Conse-
quently, we are in the presence of a constrained Hamiltonian system with
a singular higher-order Lagrangian, in the framework of the Dirac formalism.
Therefore, we consider the Ostrogradski transformation to introduce canonical
momenta in this higher derivative theory [20, 21, 22, 23, 24]. In those papers,
we are going to apply the same ideas to construct the canonical formalism
in our case. Moreover, we will work as close as possible to the Dirac conjec-
tures [17, 18]. In this paper we will give only the constructive method. We
will not explicitly write all the results because the computations, even proved
straightforwardly, involve tedious algebraic manipulations. We start by defin-
ing the following independent dynamical field variables: L., = (Lao, Lai),
with L,; = n, N* + N, and B,, = 9y L, -

The Ostrogradski transformation respectively introduces the following ca-
nonical momenta:

SR oL

HZ - — — Oy d (35)
dL, a0, L,)
(2) oL
H;{ = (36)

4
(0 L,,)

The relationship between field and momentum independent of the velocities
gives rise to the following primary constraints:
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1) (1)

1
O = -0 () - 0 () N el - 0 (uly L)
NF "
+ Big Wiy + Ly, B (ijLNL )wjdzo, (37)
(2) (2)
(2) (2)
Hz _i_NL 1/2 ( 70 zk + sz €]k> Ljd ~0. (39)

(1)
The remaining momentum which depends on the velocities is II.

By means of these momenta, the canonical Hamiltonian remains defined
by:

(1) )
Hean = B 11 + Bd I —C | (40)

where LZ by Bj was replaced. We note that the canonical Hamiltonian is
formed by eliminating only the velocity ij The field Bj; cannot be eliminated
from the formalism when we treat with higher derivative Lagrangians. Once
the Lagrangian is used and the velocities Bl‘j is eliminated.

Finally, we can write the extended Hamiltonian (first class dynamical quan-
tity):

Hy = /d2x Hy (41)

which is the generator of time evolutions of generic functionals. The Hamilto-
nian density Hy remains defined by:

1) (1) (2) (2)

(1) (2)
where \¢ and /\Z are arbitrary Lagrange multipliers.

Now, we must go on with the Dirac’ s algorithm and impose the consistency
conditions on the constraints according to:

Q) — Ok-1) _ [Q(k_l) HT} ~0. (43)

(2)
Hence, for the constraint ®Y we find the following secondary constraint:
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(2())
(Pdv HT

m @
= — 119 4+, 1T~ 0 . (44)

PB

o_8

From now on, following the Dirac’s prescriptions, the procedure can be
continued for each one of the constraints.

6 Conclusions

In this work we have applied techniques of field theory to a productive economic
system following the approach taken by other authors in this area. The formal-
ism thus obtained corresponds to a constrained Hamiltonian system containing
primary and secondary constraints and they are of first and second class. To
analyze this system, we have worked as closed as possible to the Dirac pre-
scriptions [19]. The second order formalism is obtained, starting from the
Lagrangian density, by considering strongly equal to zero constraint on curva-
ture and by eliminating wzb as independent dynamical variable. In order to
analyze this singular system the Ostrogradsky transformation is considered.
The formalism that we present is from the point of view of the broader and
more general analytical mathematics. It includes the law of Euler Lagrange,
the Lagrangian and Newtonian formalisms studied by others. This formalism,
coming from the field theory would give the possibility to study the model
dynamics more general and complex.
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