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Abstract

We prove the existence of weak solution for the Cauchy problem as-
sociated with the Aw-Rascle model for traffic flow with certain source
terms and bounded measurable initial data. For it, we introduce a flux
approximation and also an approximation of the source term in the first
equation of the system by adding a small perturbation, after we obtain
an L'(R) estimate related to one of the Riemann invariants of the ap-
proximated system, then using this estimate we apply the compensated
compactness method to prove the pointwise convergence of the viscosity
solutions.
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1 Introduction

Many of the traffic flow models are inspired by fluid mechanics models which

are based on conservative or balance equations, see for example [1, 2, 3,7, 8, 11].
The macroscopic model for traffic flow model proposed by A. Aw and M.

Rascle in [1] is a 2 x 2 system of hyperbolic conservation laws given by

pet (pv), =0
{(W)t + (puv), =0, Y
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here p and v = u — p(p) denote, respectively, the density and the velocity of
cars on the roadway and p(p) is a smooth strictly increasing function. In [11]
Zhang independently proposed the same model. If p(p) = 0, the system (1.1)
is the pressureless gas dynamics model or transport equations.

Aw and Rascle in their paper [1] studied the Riemann problem (i.e., a
Cauchy problem with piecewise constant initial data) for the system (1.1)
assuming the conditions

p(0) =0, })ig(l]pp/(p) =0, 20(p)+pp"(p)>0 for p>0. (1.2)

Two results on existence of entropic weak solution relative to the Cauchy
problem for (1.1) with bounded measurable initial data were established by
Lu in [4], one under the same conditions given on p(p) by Aw and Rascle and
other modifying these conditions.

We shall rewrite the system (1.1) in a more convenient form by introducing
the variable m = pu as

(1.3)

The eigenvalues of system (1.3) are given by
m m
M= plp), A= o p(p) = pp'(p) (1.4)

with corresponding eigenvectors to right

( 1 ) (1>
"y = | m / , 'y, =\ m]-
L\ +ep(p) > \7

2(p,m) = %, w(p,m) = % —p(p). (1.5)

The functions

are Riemann invariants for the system (1.3), associated respectively with A,
and A,.

When the model (1.1) contains source terms, the model is a system of laws
of balance. We will study the Cauchy problem for the Aw-Rascle model with
source

{pt+ (p(w—p(p)), + gi(p, pu) =0 (1.6)

(pu)e + (pu(u — p(p))), + g:(p, pu) = 0,

and initial data

(p(ZL‘, O>’U(I70)) = (p()(.l’),uo(l‘)), pO(ZE) >0, (17)
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where po(z), uo(x) € L*(R) and g¢,(p, pu), ¢ = 1,2 are locally Lipschitz conti-

nuous functions. For (1.6)-(1.7) with the conditions on the function p(p) given

in Theorem 2 of [4], we obtain a result on the existence of weak solution.
Notice that if we make m = pu in the system (1.6), this system becomes

{pt+ (m = pp(p), + 9:(p;m) =0 (1.8)

my + (m72 - mp(p))x + g:.(p,m) = 0.

2 The Cauchy problem for the Aw-Rascle mo-
del with a source

With the conditions on p(p) assumed in this paper an argument following
the ideas of Bereux and Sainsaulieu [9] is not valid to prove the positivity of
p¢, which shows that the vacuum state is not present in the diffusion system
associated with (1.8). The technique used here for a positivity proof is an
adaptation of a technique due to Lu, which he first introduced in [5] to study
the isentropic gas dynamics system for general pressure function. For this
reason, we introduce an approximation of the flux functions and the source
term ¢,(p, m) in the system (1.8).

Thus, to establish the existence of a weak solution for the Cauchy problem
(1.6) - (1.7), we first consider the following approximate system

oo+ (2 — (p—plp)) +E5gi(p,m) =0

2 5 (2.1)
m#(“’ o e=d) p(p)) +92(p,m) = 0,
where ¢ > 0 is a small perturbation constant.
The matrix
om ’ —0
= —plp) = (p=9)p(p) =
dF (p,m) = 7P2m2 m —5m —&m P o s (22)
s (20 p/;) _ %p(p) _( j) P (p) 2(ﬂp25) _ prsp(p)
is the Jacobian matrix of the flux functions in (2.1) with eigenvalues
p—0(m m
A== (? - p(p)) e = p(p) = (p = 0)p'(p), (2.3)

and corresponding Riemann invariants
m p—90(m p—90
z5(p,m) = i z(pm),  ws(p,m) = - (— —p(p)> = Tw(p, m),

where z(p,m) and w(p, m) are given by (1.5).



750 Juan C. Hernandez, Herndan Garzon and César Gomez

3 Existence of weak solution

The study of the Cauchy problem (1.6) - (1.7), which we do here, is based on
the ideas given by Lu in [4], paper in which he studied the Cauchy problem

(1.6) - (1.7) when g,(p, pu) = g.(p, pu) = 0.
To (2.1) there is associated the diffusive system

€ —4)m* € € ‘— € € (3
pi+ (% = (p* = d)p(p )) + £220:(p0 me) = ep,

m§+((06—5)(m6)2 _ (pt=8)mS

(3.1)
(p°)2 e p(Pe)g>x+gz(PE, me) = ems,.

In the following, we write the functions p, m with the indexes p©°, m®°, only
when it avoids ambiguities.

Lemma 3.1. Let p,(x) > ¢, and w,(x) = w(x,0) > ¢, for two positive cons-
tants cq,c, and let g,(p,m) = ph(p,m) for a continuous function h(p,m),
assume that

-5 -0
pTzépgl + ZsmGa = G225 + s, pTwap.% + Wsmgo < CLws + G5, (3-2)

where ¢; i = 2,...,5 are real constants and the functions z;(p, m), ws(p, m) are
the Riemann invariants given in (2.4). If the function pp(p) is strictly convex
for p >0, lim, 0 pp(p) = 0 and lim,_,o(pp(p))" > cs, where ¢, is a constant

satisfying %cl + ¢ > supxeR";OO((;)) . Then for any € > 0, we have the a-priori

bounds for the Cauchy problem (3.1)-(1.7)

§ < p0 < M(T), ‘me’é < M(T), (z,t) eRx[0,T],  (3.3)

for a positive constant M (T) independent of € and 6.

Proof. We multiply the first and second equations of system (3.1) respectively
by zs, and z;,, and adding the results, we obtain

-0 2e
Z5t + )\61261 + pTglzép + G2Zsm = €Zspx T ;szax (34)

Proceed similarly with the Riemman invariant w;, we find

p—20
Wiyt A5y Wsy + Tglwaﬁgzwam = €Wspy —€ (wapppi+2w5pmpxmx+wammmi> .

(3.5)
Algebraic manipulations on the equation (3.5) yields

\ 2¢ (0 266> 9 P
Wsg + AsaWsq + FAVET L) prwsy, — mpmwé + 7g1wép

€ -0 / 1/
+ GoWspy = EWsgg + (v e ) (20'(p) + pp"(p)) P2 (3.6)
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Using the inequalities (3.2) in the equalities (3.4)-(3.5) together with the as-
sumption of strict convexity for pp(p), we get the following inequalities

2¢
Zst + As1260 + Cozs + 3 < €255, + ;pxzm, (3.7)
and
2¢ 1) 2¢6?
Way+ NsoWs g+ ? (m — 1) PaWsy — pQ(p——(S)zpiwé +Cws+C5 > €Wsyy. (3.8)

By applying the maximum principle to the inequality (3.7) we get the estimate
2(p90, me%) = z5(p*°, m=°) < N(T). Since py(z) > ¢, > 0 and wy(z) > ¢, >
0, this means that w,,(z) = ws(x,0) > %cl for small §, again applying the
maximum principle to (3.8) we obtain the estimate w,(p°, m*®) > 1c,. We
have from (2.4)

€,0

p
pe,é -4

this readily leads to the bounded w(,oe’a,me"s) > %cl > 0. Using the first
equation in (3.1), we get p*° > §. The region

w(pe,é, me,&) — W, (pe,57 me,5)7

Y= {(p,m) : Z(p, m) < N(T)7 w(p, m) > %Clv p = 5}

is a bounded invariant region (see figure 3.1) for a suitable constant N(T').
Then for p©°, m*® we have the bounds

5 S pe,5 S M(T), )me,é

for a suitable constant M (7'), which is independent of € and §. O]

Figure 3.1. Invariant region Y/
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Remark 3.2. To understand why the condition on the constant cq is required
in Lemma 3.1 we consider the function p(p) = —%p‘“ — %cl, 0<a<l1. For
this function, which satisfies the hypotheses in the Lemma except the one that
involves the constant cq, the region ¥ is unbounded (see figure 3.2).

1.. .
:icl

figure 3.2 Invariant region

We give below a simpler direct proof of positivity for p°, proof that we
adapt from Bereux and Sainsaulieu [9].

Lemma 3.3. With assumptions given in lemma 3.1, the following a-priori
bounds hold for the problem (3.1)-(1.7)

p(z,t) > c(t, e, 8) > 0, (3.9)
where c(t,€,0) could tend to § ast — 400 or e — 0.

Proof. We obtain as in the proof of Lemma 7.9.2 in [9],

vz, t) < vs(x) * k(x,t) + %t + /0 (u—p(p)) *. (ke(z,t —s))_ds,

€

where v = —In(p—0), vi(z) = —In(py(z) —6) and kc(z,t) = \/Lr?exp (—f—;).

It follows from the above inequality that

N. t
v(z,t) < —ln(S—i——lt—i—Nz\/j,
€ €

since po(x) > 2J. Therefore

p(x,t) Zéexp—<&t+Ng\/?> + 9 >c(t,e,6) > >0,
€ €

and thus we obtain the bounds (3.9). O
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From now on, z(-,t) denotes the function of = defined by z(-,t) = z(x,t) =
Z(pe,é’ me,5).

Lemma 3.4. Let z be the Riemann invariant given in (1.5). If the total va-
riation of zy(z) = z(x,0) is bounded and there exist a function G(s) satisfying

6(2) ==Lt mge o) 20 (3.10)

p

then zs,(-,t) is bounded in L*(R), moreover
+o00

o)

Proof. Following the same kind of calculation as in the proof of the Section 2
in [4], from the equality (3.4) one readily checks the next inequality

+oo
’zm(x, t)| dx < / ‘ZOZ(QU)} dz =TV (z(z)). (3.11)

o0 —0o0

x’

. -0 _
0] + (/\5|0|)x + signf ('OTglzép + 9225m> < €l0| 0 + (26,0 lpx|9|)

T

where 6 = z;,. By using the assumption (3.10) in the above inequality, we
obtain

101 + (Asl0]), < 16] + (Asl6]), + G (25)16)]
< €lf]ae + (2607 pal0])

and integrate it over R x [0, t], we conclude the result of the lemma. O

Remark 3.5. There are functions g,, g, and G(s) satisfying the assumptions
of the lemmas 3.1 and 3.4, such as

g:(p,m) =0, g(p,m)=ap, G(s)=a.

gl(ﬂ? m) = 07 92(p7 m) = am, G<S> Lol
g91(p;m) = ap®,  g:(p,m) = apm, G(s) = ads.

where a > 0 is a constant.

Let F(-) be any convex function of the Riemman invariant z given in (1.5),
the pair

m

(). atpn)) = (o8 (")t =) (% =) F(%) ). (a12)

is a pair convex entropy-entropy flux for the system (2.1) (see [10]).
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Lemma 3.6. We assume the same conditions given in the lemmas 3.1 and
3.4. Let g(p) be an arbitrary smooth function, then

g(r), + </,,

is compact in H, (R x RY), where f(s) = —sp(s).

g'(s)f'(s)ds + g(pe"s)ug’(S) (3.13)

T

Proof. Multiplying the first equation of system (3.1) by ¢'(p), we obtain

2
T

9(p), — 9'(p) (pp(p) — pu)  — 69" (p)us + 69" (p)p(p), =€9(p),n — €9" (P)p
—(p—0)g' (p)h(p, pu),

this equation is equivalent to

9(p), + (/p g'(s)f'(s)ds + g(p)U) = €g(p)oe — €9"(P)15

xT

—6 (/p g’(S)p’(S)dS) + (g(p) — pg'(p) + 64" (p))us — (p — 6)d () h(p, pu).

(3.14)

By using the L! estimate (3.11) and taking a strictly convex function g(p) into
(3.14), we see that

e(p5?)? is bounded in L} (R x RT), (3.15)

and from here that —eg”(p)p? is also bounded in L (R x RT). Since the
two last terms in the right-hand side of (3.14) are bounded in L; (R x RT),

loc
we have that —eg”(p)p2 + (9(p) — pg'(p) + 69'(p))uz — (p — 8)g'(p)h(p, pu) is
bounded in M(R x RT)(the space of Radon measures). On the other hand,
again the estimate (3.15) together with the Cauchy-Schwarz inequality allows
to establish that eg(p),, and —6([* ¢'(s) f'(s)ds)  are compact in H; (RxRT).
Finally, the H_ (R x R*) compactness of (3.13) follows from Murat’s lemma

loc

([6]) since (3.13) is bounded in W, (R x R*). This completes the proof. []

Corollary 3.7. Assuming the hypotheses as in the lemmas 3.1 and 3.4. If
g(p) is an arbitrary smooth function then

( [ " < / " )5 ds / " g ds) >

(3.16)
is compact in H,'(R x RY), where f(s) = —sp(s).

8

g'(s)f"(s) d8>

t
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Lemma 3.8. Let g(p) be a smooth function and together with the hypotheses
of Lemma 3.1 and Corollary 3.7, we have

<g(pe,5)ue,5)t+ <g(pe,6) (ue,5)2+ue,5 /P

is compact in H,'(R x R*).

g'(s)f'(s) dS) (3.17)

Proof. Multiplying the firts equation of the system (3.1) by 7, and the second
equation by 7,,, where 7 is the convex entropy given in (3.12). Adding up, we
obtain

p—20
N+ Qe = €Ny — €F" (u)pu2 — (7%91 + nmgz)-

We can choose a strictly convex function F'(u) in the above equation to obtain
that ,
ep™ (us®)” is bounded in L}, (R x R"). (3.18)

In order to show the compactness of (3.17), we now multiply the equations
(3.4) by g(p) and (3.14) by z,, then adding the results and using that z, = u
together with (3.11), we get

2€

(9(p)u), + (g(p)u2 + u/p g'(s)f'(s) dS)z = e(g9(p)u), + ?(g(p)
—pg'(p)) putiz — €g”(p)p2u — & (u / ' g'(s)p'(s) dS) + (g(p)
(o= B) ()t — (0 — B)g' () — Glug(p) + (g<p>u

“Aaglo)+ [ )1 s+ /

p

g (s)p'(s) ds) 2o (3.19)

The terms e(g(p)u)m and —d(u [” ¢'( ds) in the above equation are

compact in H, ! (R x R*), the other terms on the right-hand side of (3.19) are
bounded in L1 (RXRJF). The left-hand side of (3.19) is bounded in W, "> (R x

loc

R*). The Murat’s lemma implies the H, ! compactness of (3.17). O

Lemma 3.9. When the hypotheses in the lemmas 3.1 and 3.4 are satisfied,
then a subsequence of {pf’é} and a subsequence of {uf"s} converge pointwisely.

Proof. Let g(p) be nonnegative strictly increasing and satisfying the conclu-
sions in Lemmas 3.1,3.4 and Corollary 3.7. We use the dlv—curl lemma to the

functions (3.13), (3.17) and then making g(p*°) = u° and fp (s)f'(s)ds =
F (/f"s), this yields

<u6,5u6,5>2 _ Wue,é(ue,é)2 — Fﬂe,éF(ueﬁ) _ M6’5u6’6 F(,UE’&) . (320)
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We have that (3.16) can be written as

F(p), + (/M

. pe° 12 [T )
since [T ¢'(s)f""(s)ds = [* F'(s)ds.
By the div-curl lemma, for the functions (3.13) and (3.21), it follows that

€,0
F(s)ds + ue"SF(,uE"S)) : (3.21)

T

)6 ,0

pe . e N
Me,é/ F,2(8> ds — 2 (’ue,é) — Me,é / F/2(8) ds + Ne,& ue,éF(Me,ci)
k k

— F(ue,5)2 _ F(ME,CS) Me,csue,(s’ (322)

where k is real constant and the overline denotes the weak-star limit (i.e.

ped = w*—limp°. Let us = p, so from (3.22) we obtain that

(= 1) /ﬂ M

where we have used that

€

’ F2(s)ds — <F(,u€:5) — F(u))2 + (F(Me"s) - F(u))Q

= pd uSF(ped) — F(pued) peduss | (3.23)

»0 K3

pesd /:6 F2(s)ds — F?(ue®) = ped /HE F(s)ds — (F(uev‘s) —F(u)>

2

(FGe) = F) + 5 [ s ds - Fluw)

€,0 €,8

T P e
/f"s/ F(s)ds = ,ufﬂ‘s/ F2(s)ds + ,uevd/ F2(s)ds.
k m k

Since the right-hand side of both equations (3.20) and (3.23) are equal, we
have

55\ _ TeF e (red)\ 2
peou pe® et (ue?)

é

(4 — ) / " P ds— (F(ud) - F) + (FG) - P (324)

As the left-hand side of the above equation is nonpositive and the right-hand
side is nonnegative, then both sides of this equation must be zero, i.e.,

(44 — 1) / " P(s)ds - (F ) = F(w) + (F(ued) — Fw) 202,5)
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and

N2 - . 9
€060 — &0 &0 (g0 2 = 0. 3.26
m ped

The equality (3.25) allow us to prove the pointwise convergence of { pued } and
so we get the convergence of { p6’5} since g(p) is a strictly increasing function.
From (3.26) we get the pointwise convergence of {ue";} in the region of p >
0. O

Theorem 3.10. Let p,(x) > ¢, and wy(z) = w(z,0) > ¢, for two positive
constants c,, ¢, and let g,(p,m) = ph(p,m) for a continuous function h(p, m),
assume that ©=22;,0, + ZinGs > Co2s + Coy  E2W5,0 + Waps < Caw; + ¢,
where ¢; i = 2,...,5 are real constants and the functions z;(p, m), ws(p, m) are
the Riemann invariants given in (2.4). If the function pp(p) is strictly convex

for p >0, lim, 0 pp(p) = 0 and lim,_,(pp(p))" > cs, where ¢, is a constant
satisfying 3¢, + ¢5 > SUP,cp 7:;((;))
(1.5). If the total variation of z,(x) = z(x,0) is bounded and there ezist a
function G(s) satisfying G(%) = %Sngl + 2mg., G'(s) > 0, then we have

that the Cauchy problem (1.6)-(1.7) has a weak solution.

. Let z be the Riemann invariant given in

Proof. We write the approximate system (3.1) in the weak form

+o0
/ / (e (7 =0) (w0 =p (") )2 ("= 0) (%, ') 0 ) it
R JO
+o0
R A R R T (AR )
R R Jo

— 9 ()06’67 p6’6u6’6)¢> dtdx + / pouo(z,0) d =
R
“+oo
—€ / / (P pue + P Ou Yy, ) dtdz (3.27)
R JO

for all functions ¢,¢ € C§° (R x [0, oo)) The term on the right-hand side
of (3.27) goes to zero as €, go to zero and the pointwise convergence of
{p°(z,t)} and {u“’(z,t)}, ensures the existence of a weak solution of (1.6)-

(1.7). O
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