
Advanced Studies in Theoretical Physics
Vol. 11, 2017, no. 12, 679 - 685

HIKARI Ltd, www.m-hikari.com
https://doi.org/10.12988/astp.2017.71052

Solution for a non-Homogeneous Klein-Gordon Equation

with 5th Degree Polynomial Forcing Function

Hernán Garzón G.

Department of Mathematics, Universidad Nacional de Colombia, Colombia

Cesar A. Gómez
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Abstract

In this paper we establish a condition for the fifth-degree polynomial
forcing function f(φ) = αφ2 + βφ3 + δφ4 + εφ5, under which the one
dimensional non homogeneous Klein-Gordon equation φtt − φxx + φ =
f(φ), admits a solution of the traveling wave type that is obtained by
using the Omega Function Method. Once this condition is determined,
some specific solutions are analyzed.
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1 Introduction

In 1924, the French physicist Louis de Broglie see [3], proposed for the first
time the idea of the matter wave for quantum particle similarly as in 1905, the
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physicist Albert Einstein developed the wave-particle theory of light. In 1926
Erwin Schrödinger an Austrian theoretical physicist see [9], supposed that the
wave equation should be:

1

c2
∂2φ

∂t2
−∇2φ = −

(mc
~

)2
φ (1.1)

Where the scalar field φ(x, t) represents the wave of matter or the wave function
associated with each quantum particle, in the direction x ∈ Rn at time t. The
resting mass is m, its speed c and ~ represents the reduced planck constant.
Equation (1.1) uses the relativistic kinetic energy expression E2 = m2c4 +
c2p2 where p is the momentum. However, this equation presented several
disadvantages as the presence of positive and negative values for energy. Even
more serious, a probability distribution of φ with negative values. Unmotivated
by these problems, Schrödinger discarted that equation. Later, he proposes a
new equation using the nonrelativist kinetic energy expression E = p2/2m +
V (x) where V (x) is the potential energy; that is now known as the Schrödinger
equation: (

−~2∇2

2m
+ V (x)

)
φ = i~

∂φ

∂t
(1.2)

finally, the physicists Oskar Klein and Walter Gordon, they were able to explain
satisfactorily the inconveniences that Schrödinger found and so again equation
(1.1) was accepted as the most appropriate model to describe the wave function
of a neutral charge particle. For this last reason the equation (1.1) is today
known as the Klein-Gordon equation, That in simplified form it can be written
as, (

�2 + k2
)
φ = 0 (1.3)

where k = mc
~ and � represents the d’Alembert operator,

� =
1

c2
φtt −∇2u (1.4)

This equation has been widely studied, see for example [1] [5] and [2]. However
in the last few years there has been a lot of interest in generalizations of this
equation, and in the non-homogenous case,

φtt − φxx + φ = f(φ) (1.5)

Where f(φ) is some smooth function. Several forms of (1.5) are analyzed in
[4], including the well-known sine-gordon equation that is obtained from (1.5)
when f(φ) = sin(φ). Our purpose is to establish some conditions under which
equation (1.6) has solutions in the form of a traveling wave. To achieve that
goal we use the omega function method, see [6].

1

c2
φtt − φxx + φ = αφ2 + βφ3 + δφ4 + εφ5 (1.6)

with φ(x, t) ∈ R x ∈ R, t ≥ 0 and c 6= 0, α, β, δ, ε real constants.
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2 Algorithm of the Omega Function Method

Various methods, see [7] and [8] are currently used to find solutions of the
traveling wave type for nonlinear evolution equations, of the form:

Q (φ, φx, φt, φxx, φtt, φxt, ...) = 0 (2.1)

where Q is a polynomial function, φ(x, t) is a real-valued function, x ∈ R and
t ≥ 0.
In this section we give a short description of a method to find soliton-type
solutions for (2.1). The method we will use is described more broadly in [6].
This method there is called the Omega Function Method. Here we present
three basic steps:

a) First, let’s do φ(x, t) = Φ(ζ) with ζ = µx − λt, where µ and λ are real
constants, and consequently we have an ordinary differential equation:

Q (Φ,Φ′,Φ′′,Φ′′′, ...) = 0, (2.2)

where Q is a polynomial function in Φ and its derivatives.

b) Let’s assume that T (ζ) is a solution of dψ
dζ

= ψ3−ψ2 and that the solution

of (2.1) can be written as:

Φ(T ) =
m∑
k=0

ckT
k (2.3)

c) With this it is achieved that equation (2.2) becomes,

m∑
k=0

CnT
n = 0 (2.4)

where the Ci depend on the parameters of the original equation (2.1). From
(2.4) an algebraic system of equations is generated, which when solved
finally allows to find some solutions of (2.1).

3 Solution of a non-homogeneus Klein-Gordon

Equation

Now, let’s see what conditions the forcing function f(φ) = αφ2+βφ3+δφ4+εφ5

must have, so that Equation (1.6) has some solutions. Making the substitutions
given in the previous section, we have

1

c2
λ2
d2Φ

dζ2
− µ2d

2Φ

dζ2
+ Φ = αΦ2 + βΦ3 + δΦ4 + εΦ5 (3.1)
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From the highest derivative and the higher order non-linear term in the equa-
tion (3.1), we can determine by balancing that 5m = m+ 4, this is m = 1 and
therefore of (2.4) we have,

Φ(T ) = c0 + c1T,
dΦ

dT
= c1,

d2Φ

dT 2
= 0 (3.2)

From (3.2), and calculating the derivatives of Φ with respect to ζ we can
replace this in (3.1) and obtain the equation:

(
3λ2c1
c2
− c51ε− 3µ2c1)T

5 + (−5λ2c1
c2
− c41δ + 5µ2c1 − 5c0c

4
1ε)T

4

+(−10c20c
3
1ε−2µ2c1+

2λ2c1
c2
−4c0c

3
1δ−c31β)T 3+(−10c30c

2
1ε−6c20c

2
1δ−3c0c

2
1β−αc21)T 2

+ (−5c40c1ε− 4c30c1δ− 3c20c1β − 2c0αc1 + c1)T − c50ε− c40δ− c30β − c20α+ c0 = 0

(3.3)

In this way from (3.3) we obtain the algebraic system of equations:

3λ2c1
c2
− c51ε− 3µ2c1 = 0

−5λ2c1
c2
− c41δ + 5µ2c1 − 5c0c

4
1ε) = 0

−10c20c
3
1ε− 2µ2c1 + 2λ2c1

c2
− 4c0c

3
1δ − c31β = 0

−10c30c
2
1ε− 6c20c

2
1δ − 3c0c

2
1β − αc21 = 0

−5c40c1ε− 4c30c1δ − 3c20c1β − 2c0αc1 + c1 = 0
−c50ε− c40δ − c30β − c20α + c0 = 0


(3.4)

When solving the system (3.4) with the help of a computer algebra system we
obtain the following results expressed in terms of the parameter α. The First;

α = α, c0 =
6

α
, c1 = − 6

α
, µ = µ, λ =

√
µ2 − 1 c,

β = −α
2

3
, δ =

5α3

108
, ε = − α4

432
,

(3.5)

and the second,

α = α, c0 =
1

α
, c1 = − 3

2α
, µ = µ, λ =

√
4µ2 +

27

2
c,

β = 3α2, δ = −5α3, ε = 2α4.

(3.6)

therefore for two forms of equation we can find the form of solution we are
looking for,

1
c2
φtt − φxx + φ = αφ2 − α2

3
φ3 + 5α3

108
φ4 − α4

432
φ5, and,

1
c2
φtt − φxx + φ = αφ2 + 3α2φ3 − 5α3φ4 + 2α4φ5

 (3.7)
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now, since the solutions of equation dψ
dζ

= ψ3 − ψ2 , are:

ψ1(x, t) = [W (k exp (−1 + ζ)) + 1]−1 ,

ψ2(x, t) = ln
(
−1+ζ
ζ

)
+ 1

ζ
+ k

}
(3.8)

whereW denotes the Lambert-W function. Then we have the following families
of solutions for the equations (3.7):

φ1(x, t) =
6

α
− 6

α

[
W
(
k exp

(
−1 + µx−

√
µ2 − 1 c t

))
+ 1
]−1

(3.9)

φ2(x, t) =
1

α
− 3

2α

[
W

(
k exp

(
−1 + µx−

√
4µ2 +

27

2
c t

))
+ 1

]−1
(3.10)

φ3(x, t) =
6

α
− 6

α

[
ln

(
−1 + µx−

√
µ2 − 1 c t

µx−
√
µ2 − 1 c t

)
+

1

µx−
√
µ2 − 1 c t

+ k

]
(3.11)

φ4(x, t) =
1

α
− 3

2α

ln
−1 + µx−

√
4µ2 + 27

2
c t

µx−
√

4µ2 + 27
2
c t

+
1

µx−
√

4µ2 + 27
2
c t

+ k


(3.12)

4 Some particular cases

Four particular cases are shown here. In all four cases (3.9), (3.10), (3.11) and
(3.12) be α = 1, µ = 2, and c = k = 1 , so the solutions that we will denote
as ϕ1 , ϕ2 , ϕ3 and ϕ4 are given by,

ϕ1(x, t) = 6− 6
[
W
(

exp
(
−1 + 2x−

√
3 t
))

+ 1
]−1

(4.1)

ϕ2(x, t) = 1− 3

2

[
W

(
exp

(
−1 + 2x−

√
59

2
t

))
+ 1

]−1
(4.2)

ϕ3(x, t) = 6− 6

[
ln

(
−1 + 2x−

√
3 t

2x−
√

3 t

)
+

1

2x−
√

3 t
+ 1

]
(4.3)

ϕ4(x, t) = 1− 3

2

ln
−1 + 2x−

√
59
2
t

2x−
√

59
2
t

+
1

2x−
√
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2
t

+ 1

 (4.4)



684 Hernán Garzón G. et al.

Figure 1: ϕ1 , ϕ2 ϕ3 , ϕ4 with α = 1, µ = 2, c = 1, and, k = 1

As we can see the graphs of ϕ1 and ϕ2 are smooth surfaces, contrary to
what appears in ϕ3 and ϕ4 that show a critical zone, near the strip where these
solutions are not defined. this is, for ϕ3 the region between the lines x =

√
3
2
t

and x = 1
2

+
√
3
2
t, and for ϕ4 the region between the lines x = 1

2

√
59
2
t and

x = 1
2

+ 1
2

√
59
2
t.

5 Conclusions

In the present work we have found some conditions under which the non-
homogeneous Klein-Gordon equation (1.6), admits solutions of the traveling
wave type. We have also found quite interesting solutions, of two completely
different kinds, some expressed in terms of the Omega function, which as we
know can not be expressed in terms of elementary functions, and others in
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terms of logarithmic functions, which generate singularities near the region
where the solutions are not defined.

References

[1] W. Baoxiang, On existence and scattering for critical and subcritical non-
linear Klein-Gordon equations in Hs, Nonlinear Anal. Theory, Methods &
Applications, 31 (1998), 573-587.
https://doi.org/10.1016/s0362-546x(97)00424-0

[2] A. Biswas, A. Yildirim, T. Hayat, M. Aldossary, and R. Sassaman, Soliton
Perturbation Theory for the Generalized Klein-Gordon Equation with Full
Nonlinearity, Proceedings of the Romanian Academy, Series A, 13 (2012),
no. 1, 32-41.

[3] L. de Broglie, Waves and Quanta, Nature, 112 (1923), 540.
https://doi.org/10.1038/112540a0

[4] Q. Changzheng, H. Wenli and D. Jihong, Separation of Variables and Ex-
act Solutions of Generalized Nonlinear Klein-Gordon Equations, Progress
of Theoretical Physics, 105 (2001), no. 3, 379-398.
https://doi.org/10.1143/ptp.105.379

[5] T. D’Aprile and D. Mugnai, Non-Existence Results for the Coupled Klein-
Gordon-Maxwell Equations, Advanced Nonlinear Studies, 4 (2004), 307-
322. https://doi.org/10.1515/ans-2004-0305

[6] H. Garzon and J. Hernandez, Traveling Wave Solutions of a Generalized
Burgers’ Equation, Advanced Studies in Theoretical Physics, 11 (2017),
no. 12, 621-627. https://doi.org/10.12988/astp.2017.71048

[7] W. Malflied, Solitary wave solutions of nonlinear wave equations, Ameri-
can Journal of Physics, 60 (1992), no. 7, 650-654.
https://doi.org/10.1119/1.17120

[8] W. Malflied, The tanh method: a tool for solving certain classes of nonlin-
ear evolution and wave equations, Journal of Computational and Applied
Mathematics, 164-165 (2004), 529-541.
https://doi.org/10.1016/s0377-0427(03)00645-9

[9] E. Schrödinger, An Undulatory Theory of the Mechanics of Atoms and
Molecules, Physical Review, 28 (1926), no. 6, 1049-1070.
https://doi.org/10.1103/physrev.28.1049

Received: December 2, 2017; Published: December 15, 2017


