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Abstract

Based on coherent states of the reversed harmonic oscillator, a wave
function is proposed with the following three properties: (1) The mean
values of position, r0, and velocity, v0, are parallel to the x axis; (2) The
wave function is extended by a curve parameter w ≥ 0 such that, as a
function of w, the mean values rw and vw describe a rectilinear orbit
along the x axis with the mean initial values r0 and v0; (3) The mean
energy is constant with respect to w by the leading order of the per-
turbation parameter ε. For comparison, the classical one-dimensional
equation of motion is integrated. Exact analytical equivalence between
classical and the ε = 0 quantum limit is found, both for positive and
negative mean energy. The curve parameter w is in 1-1 correspondence
with time t ≥ 0.
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1 Introduction

In the previous two articles [11, 12], both elliptic, hyperbolic, and parabolic
Kepler orbits were derived from quantum theory in the classical limit. These
orbits share the common property that an apex exists where the velocity is
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normal to the vector with origin in the force center. Equivalently, the orbits
are connected with non-zero angular momentum, which in the macroscopic
limit is large in units of ~. The apex conveniently served as initial point which
was built into the wave function through the scalar length values r0 and v0 of
the mean initial position and velocity vectors.

Due to the zero angular momentum, the previous wave function cannot be
used in the rectilinear case. Clearly, quantum mechanical fluctuations forbid
to reduce the problem to a one-dimensional Hamiltonian.

We have to adjust the parameters of the wave function such that the mean
initial position vector and the velocity are parallel, or anti-parallel:

〈ψ0|rψ0〉 = {X0, 0, 0}, (1/m)〈ψ0|pψ0〉 = {σV0, 0, 0}, σ = ±1, (1)

where X0 > 0, V0 > 0, and r and p denote the position and momentum
operators. The mean initial point is assumed to be always on the same side
of the force center. In addition, the sign of the potential, α/r, has to be
considered. As perturbation parameter, the number ε = ~/(mX0V0) will be
used, which generally is small in macroscopic situations.

Let us briefly discuss the classical motion which was illustrated in [8], based
on a reduced one-dimensional Hamiltonian with a regularized attractive po-
tential. In the case of positive energy, the trajectories, of course, escape to
infinity. However, the case σ = −1 is intriguing, since initially the mass point
falls towards the singularity. In order to obtain continuous curves, the poten-
tial, −|α|/r, was regularized in [8] as −|α|/(r+ η2) with the consequence that
the mass point moves through the center, at a finite speed, and escapes to
infinity on the other side of the force center.

In a quantum mechanical treatment, the singularity at r = 0 is smoothed
out by the finite extension of the wave function; regularization is not necessary.

The case of positive energy and a repellent potential corresponds to Ruther-
ford scattering. According to Eq. (3-67) in [4], the connection between the
impact parameter s and the scattering angle Θ is given by

s = const. cot(Θ/2).

A rectilinear trajectory corresponds to zero impact parameter, s = 0, which,
hence, leads to the scattering angle Θ = π, i.e. to backscattering. This is
in agreement with the classical limit of the quantum mechanical treatment to
follow, but at variance with the result in [8]. It should be remarked that the
angle Θ refers to a coordinate system with origin in the force center which is
non-inertial in general. But, as can be shown, zero impact parameter implies
backscattering also in the laboratory system when the target mass is finite,
see, e.g., Eq. (3-72) in [4]. Rutherford backscattering spectrometry (RBS) is a
widely used analytical tool in the sciences [10]; for recent works see for instance:
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in solid state and surface physics [16, 5], in earth science [3], in astrophysics
[6], or in archaeology [9]. As compared to scattering theory which is concerned
with asymptotic states, here we start with a wave function which is prepared
at time t = 0 for a finite distance and can be continuously followed for t > 0.
If the potential is attractive, the particle comes close to the scattering center
after finite time. Thus, mean square deviations can be determined near the
center, in principle, whereas in the limit of infinite time, the asymptotic case,
the mean square deviation of position diverges by quantum diffusion in the
given case.

As previously [11, 12], the dynamics is described by a curve parameter
w ≥ 0 for positive energy and by w̃ ≥ 0 with w = i w̃, if the mean energy is
negative. The parameter w̃ corresponds to the eccentric anomaly in the case of
elliptic orbits. In order to establish the 1-1 connection with time t, it is crucial
to ensure that the mean energy does not depend on the curve parameter. To
this end, an open variable γ0 which is built into the wave function has to be
properly disposed of; γ0 may depend on the curve parameter, in principle.

The quantum regime with non-zero perturbation parameter, ε 6= 0, will
be investigated in a further study; first attempts indicate that finite order
perturbation limits the definition domain of the curve parameter such that
the trajectory does not reach the force center; a kind of ”horror singularitis”.
We think that the situation can be clarified, if one succeeds to fulfill energy
conservation rigorously, i.e., non-perturbatively.

The mean values are analytically calculated with the help of Mathematica
[15]. The task amounts to carry out five-dimensional integrals. The primary
outputs often consist of sums with more than hundred terms. To simplify the
expressions, useful tools are available by Mathematica, but the final compact
results are mostly achieved only with additional efforts by the author. How
can one check the results? In the given case, the classical limit of the quan-
tum mechanical calculations agrees with classical mechanics; the equivalence
is analytically examined and verified in Appendix B. Furthermore, the rela-
tive mean square deviations, for instance (∆vi)

2/〈vi〉2, should be of order ε
in macroscopic situations like celestial mechanics; otherwise the trajectories
of the planets or artificial satellites would be observably blurred by quantum
fluctuations. The application of this kind of macroscopic principle will facili-
tate the mean value calculation of the kinetic energy where, to leading order,
〈v2
i 〉 = 〈vi〉2[1 +O(ε)], i = x, y, z. This property was explicitly verified in pre-

vious work [11, 12] and is also proved for the given case in work supplemental
to this article [17].
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2 Implementing initial conditions

In analogy to [11, 12], we adopt a wave function Ψw, which lives in the
Kustaanheimo-Stiefel (KS) [7] configuration space u = {u1, u2, u3, u4} ∈ R4,

Ψw(Φ) = C exp
[
a(w) · u(Φ)− Γ(w)u2/2

]
, 0 ≤ Φ < 2π, Real(Γ) > 0,

(2)
where the parameter vector a ∈ C4 is specified by the initial conditions, C
is the normalization constant, and w is a curve parameter with w = 0 corre-
sponding to the initial time t = 0. The function (2), essentially, is the fourfold
product of a coherent state of the reversed harmonic oscillator [11, 14], i.e., an
oscillator with imaginary frequency. The connection of the vector u with 3-D
polar coordinates (r, θ, ϕ) can be written as follows [2, 11]:

u1 =
√
r cos(θ/2) cos(ϕ− Φ); u2 =

√
r cos(θ/2) sin(ϕ− Φ);

u3 =
√
r sin(θ/2) cos(Φ); u4 =

√
r sin(θ/2) sin(Φ),

(3)

where
r > 0, 0 < θ < π, 0 ≤ ϕ < 2π, and 0 ≤ Φ < 2π; (4)

The KS phase Φ describes the extension to the forth dimension. Eventually, in
physical space, the wave function, ψw, is obtained by projecting out the phase
Φ as

ψw =

∫ 2π

0

dΦ Ψw(Φ). (5)

The initial conditions (1) are implemented through the following parameter
components ak(0):

a1(0) = ρ0 cos(Φ0)[1 + iσ ν], a2(0) = ρ0 sin(Φ0)[1 + iσ ν],
a3(0) = a1(0), a4(0) = −a2(0),

(6)

with the phase Φ0 ∈ (0, 2π) and the number ν > 0 being free constants, and

ρ0 = Γ0

√
r0/2 > 0, Γ0 = Γ(w = 0) > 0, σ = ±1, (7)

where, in the classical limit, r0 = X0 is the initial distance between the apex
and the force center; quantum correction will give rise to a re-normalization
of r0 in terms of the physical initial value X0.

The result (6) is verified later on by the general mean values of position
and velocity as a function of w ≥ 0; a constructive derivation works in analogy
to Sec.V of [11]. Where does the initial parameter V0 of the velocity enter?
From (2) it is seen that the initial width of the wave function is characterized
by Γ0. So we introduce the dimensionless parameter

κ := r0Γ0. (8)
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As it turns out, κ is fixed by the initial parameters X0 and V0; it is a large
number in macroscopic cases. We also introduce the dimensionless velocity
parameter ζ and the velocity constant v0 as follows:

ζ = v0/V0, v0 = ~/(2mX0), 〈vx〉(w = 0) = σV0, σ = ±1. (9)

As will be seen, κ is a unique function of ζ and, thus, of the initial magni-
tudes X0, V0. The classical limit is obtained for ζ → 0. For specifics of the
dependence κ = κ(ζ), see Sec. IV.

The dependence on w results from the evolution of the coherent oscillator
states according to [11]. In the hyperbolic case, i.e., for positive mean energy,
it is described with the help of the auxiliary functions

f(w) = cosh(w)− i γ0 sinh(w), h(w) = [f(w)f ∗(w)]−1 (10)

where the star means complex conjugation. The parameter γ0 will be chosen in
a later step by the condition that the mean energy is constant with respect to
the curve parameter w. According to [11], the extension to parameters w > 0
proceeds as a(0)→ a(w) and Γ0 → Γ(w) with

a(w) = a(0)/f ∗(w); Γ(w) = Γ0h(w)
[
1− i sinh(2w)(1 + γ2

0)/(2γ0)
]
, (11)

where Γ0 > 0 is fixed by the initial data through (8) and (9).

3 Mean values

Henceforth, we set the number ν = 1, for simplicity. At variance with previous
calculations [11, 12, 13], for use in a further study, we will calculate mean val-
ues exactly when possible, without resorting to an asymptotic approximation.
However, in the given article, only the leading order with respect to κ will be
needed, which is equivalent to the limit ε→ 0 with ε = 1/κ. The mean value
of an operator O will be calculated via the u space, as is outlined in Sec. 4.3,
Appendix B, and Appendix C of [12],

〈ψw|Oψw〉 =

∫ 2π

0

dφ

∫ ∞
−∞

(8u2)du1...du4 Ψw(Φ′)∗ [OΨw(Φ)] φ = Φ− Φ′,

(12)
where

Ψw(Φ) = C exp
[
a(w,Φ) · u− Γ(w)u2/2

]
, u = u(Φ = 0). (13)

As compared to [11, 12], the parameter vector a now differs due to the new
initial conditions. Using (6), (7), and (11), we write (setting ν = 1)

a ≡ a(w,Φ) = [ρ0/f
∗(w)] (1 + iσ) {cos(Φ), sin(Φ), cos(Φ), − sin(Φ)} , (14)

a∗ ≡ a∗(w,Φ′) = [ρ0/f(w)] (1− iσ) {cos(Φ′), sin(Φ′), cos(Φ′), − sin(Φ′)} ,
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and introduce the four-vector A:

A = a∗(w,Φ′) + a(w,Φ). (15)

The arbitrary KS phase Φ0 which appears in a(0) has been set equal to zero,
for simplicity. Later on, we will find that the y and z components of the mean
values of position and velocity vanish identically. This is due to the following
symmetry of the parameter vectors:

a1(w,Φ) = a3(w,Φ), a2(w,Φ) = −a4(w,Φ); A1 = A3 A2 = −A4. (16)

For the calculation of mean values, we will express the observables in terms
of the 4-vector u. It turns out that the observables do not depend on the
KS phase Φ, see (3). As a consequence, the mean values of the position and
velocity depend on the difference φ: =Φ−Φ′, only. From [12], we take over the
dimensionless functions κ0 and κ1, which are modified by the new parameter
vector a. They are defined through

A ·A = 4r0Γ2
R (κ0 + κ1 cos(φ)) , φ = Φ− Φ′, (17)

and now read (setting ν = 1)

κ0 = γ0σ sinh(2w), (18)

κ1 = h−1(w) = cosh2(w) + γ2
0 sinh2(w). (19)

3.1 Normalization

The normalization condition is worked out in Appendix A1 with the result

1 ≡ 2(2πr0/K)3 exp(K κ0)I0(κ)C2 [κ Iκ + 2 +Kγ0σ sinh(2w)] ,

K = r0ΓR = κh(w), κ = r0Γ0, (20)

where we introduced the quotient of the modified Bessel functions I1 and I0:

Iκ = I1(κ)/I0(κ). (21)

We will use repeatedly the following properties of the dynamic magnitude
parameter K:

K/κ = h(w) =
[
cosh2(w) + γ2

0 sinh2(w)
]−1

= 2
[
1− γ2

0 + (1 + γ2
0) cosh(2w)

]−1
. (22)
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3.2 Reciprocal distance

The calculation of 〈1/r〉 is facilitated by the fact that the observable 1/r ≡ 1/u2

cancels against the metric factor u2, so one needs no parameter differentiation
with respect to ΓR. One obtains straightforwardly

〈1/r〉 = (K/r0) [2 + κIκ +Kγ0σ sinh(2w)]−1 (23)

= (K/X0)(κ+ 3Iκ) [(2 + κIκ)(2 + κIκ +Kγ0σ sinh(2w))]−1 ,

where in the last equation we used the renormalization of r0 in terms of X0,
see (34) below. To leading order in κ, we obtain with the aid of the property
(22) for K:

〈1/r〉 = X−1
0 [cosh(w) + γ0σ sinh(w)]−2 +O(1/κ). (24)

3.3 Position vector

In terms of the vector u, the cartesian position components are defined as

x = 2(u1u3 − u2u4), y = 2(u1u4 + u2u3), z = u2
1 + u2

2 − u2
3 − u2

4. (25)

The calculation of the mean values is sketched in Appendix A2; it is closely
based on the method outlined in Appendix B of [12]. We use the abbreviation

F (A) := A2 + 16ΓR, (26)

and obtain for the components xj with x1 ≡ x, x2 ≡ y, x3 ≡ z

〈xj〉 =
π2C2

Γ6
R

∫ 2π

0

dφF (A)Fj(A) exp [K(κ0 + κ1)] , (27)

where

Fx = A1A3 − A2A4, Fy = A2A3 + A1A4, Fz = A2
1 + A2

2 − A2
3 − A2

4. (28)

By the symmetry (16), the y and z components vanish identically:

Fy = Fz = 0, and 〈y〉 = 〈z〉 = 0. (29)

As is shown in Appendix A2, the non-zero component has the mean value

〈x〉 = π
(
4πr2

0/K
)2
K−1C2 exp(Kκ0)I0(κ) [c0 + c1Iκ + c2 (−Iκ/κ+ 1)] , (30)

with
c0 = κ0(4 +Kκ0), c1 = 2κκ0 + 4κ1, c2 = κκ1, (31)
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where we used the relation Kκ1 = κ. After inserting the c coefficients, we
arrive at

〈x〉 = π
(
4πr2

0/K
)2
K−1C2 exp(Kκ0)I0(κ)

[
4κ0 +Kκ2

0 + κκ1 + (3κ1 + 2κκ0)Iκ
]
.

(32)
In order to eliminate the normalization constant C, we divide (32) by the
condition (20) to obtain

〈x〉 = r0
4κ0 +Kκ2

0 + κκ1 + (3κ1 + 2κκ0)Iκ
κ Iκ + 2 +Kγ0σ sinh(2w).

(33)

The initial value X0 = 〈x〉(w = 0) is obtained by making use of K(0) = κ,
κ0(0) = 0, and κ1(0) = 1. We find the following connection between the wave
function parameter r0 and the mean initial component X0:

X0 = r0
κ+ 3Iκ
2 + κIκ

implying r0 = X0
2 + κIκ
κ+ 3Iκ

. (34)

To leading order with respect to κ (or K = κh(w)), we find

〈x〉 = X0 [cosh(w) + γ0σ sinh(w)]2 [1 +O(1/κ)] . (35)

3.4 Velocity

As it is sketched in Appendix A3, the following intermediate expressions are
obtained for the velocity components vj:

〈vj〉 = −16π2i ~C2

mΓ4
R

∫ 2π

0

dφGj(a,A) exp [K(κ0 + κ1 cos(φ))] , j = x, y, z,

(36)
where

Gx = iΓI(A2A4 − A1A3) +

ΓR [A1a3 + A3a1 − A2a4 − A4a2 − A1A3 + A2A4] ,

Gy = −iΓI(A2A3 + A1A4) +

ΓR [A2a3 + A3a2 + A1a4 + A4a1 − A2A3 − A1A4] ,

Gz = −(1/2)iΓI
(
A2

1 + A2
2 − A2

3 − A2
4

)
+ (37)

(1/2)ΓR
[
A3

3 + A2
4 − A2

1 − A2
2 + 2 (A1a1 + A2a2 − A3a3 − A4a4)

]
.

By the symmetry (16), the y and z components vanish identically:

Gy = Gz = 0, and 〈vy〉 = 〈vz〉 = 0. (38)

For the x component one finds, see Appendix A3.,

〈vx〉 = 4π3(C2~r2
0/m)

(
K2γ0

)−1
κI0(κ)

[
2γ0σ cosh(2w) + (1 + γ2

0) sinh(2w) Iκ
]
,

(39)
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model
electron
proton

proton
proton

Satellite
Earth

X0 10−10m 10−10m 4× 107m
V0 16 eV 10 eV 5000 m/s
m me mp mS = 1000kg

α - e2

4πε0
+ e2

4πε0
-GmSmE

ζ 4.0986 138.87 4× 1048

κ 4.5284 138.87 κ = ζ
λ = γ0 3.1618 0.6460 2.2247

Table 1: Three examples for a rectilinear motion (head-on collision with σ =
−1) for mean initial distance and speedX0 and V0. The meaning of the symbols
is: e proton charge, me(p) electron (proton) mass, α the coupling constant, ε0
electric constant, ζ = V0 in units of v0 = ~/(2mX0), κ the width parameter of
the wave function as calculated from ζ, λ2 the quotient of the initial kinetic
energy and initial total energy, γ0 a wave function parameter calculated from
energy conservation. To leading order in κ, γ0 equals λ. It is noticed that the
mean total energy is positive in the three models which implies that λ is real.

and after eliminating the normalization constant C

〈vx〉 =
~Kκ

4mr0γ0

2γ0σ cosh(2w) + (1 + γ2
0) sinh(2w) Iκ

2 + κIκ +Kγ0σ sinh(2w)
, (40)

where r0 has to be replaced by (34) in terms of the mean initial value X0.
The initial velocity, U0 = σV0, at w = 0 (remember K(0) = κh(0) = κ)

comes out as

V0 = v0κ
2(3Iκ + κ)/(2 + κ Iκ)

2, v0 = ~/(2mX0). (41)

To leading order in κ, we find

〈vx〉 =
~κ

2mX0γ0

γ0σ cosh(w) + sinh(w)

cosh(w) + γ0σ sinh(w)
, σ = ±1. (42)

4 Width of the wave packet

The width parameter κ will be determined in terms of the initial data.
Before, let us comment on Tab. I by specifying the coupling constant α of

the Coulomb-Kepler problem. In the electric case the coupling reads

αel = 1/(4πε0)Q1Q2, (43)

where ε0 is the electric constant, and Q1 and Q2 are electric charges of positive
or negative sign. In the case of two classically interacting protons, the quotient
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of the gravitational coupling constant αG = −GM1M2 and of αel has the order
of magnitude

|αG/αel| ≈ 10−36, (44)

a well known example for the relative weakness of gravitation.
In the following, we determine κ in terms of the initial values X0, V0. The

function Iκ, defined in (21), can be numerically evaluated by calling the func-
tions BesselI[1,κ] and BesselI[0,κ] of Mathematica [15], which, however, expo-
nentially increase with κ. For large values of κ, one better uses the asymptotic
expressions of the modified Bessel functions, see formula (9.7.1) in [1], and
takes advantage of the fact that the exponential factors exp(κ) of the asymp-
totic expressions drop out in Iκ. For κ = {5, 10, 100} the following asymptotic
approximation has errors of the order {10−4, 10−6, 10−12}:

I(5)
κ = 1− ε/2− ε2/8− ε3/8− (25/128)ε4 − (13/32)ε5, ε = 1/κ. (45)

As can be proved from the integral representation (9.6.19) [1] of modified
Bessel functions, one has the rigorous bounds 0 ≤ Iκ < 1 for κ ≥ 0 with the
limit I∞ = 1. For the relation κ = κ(ζ), one solves (41) for κ in terms of
ζ = V0/v0 ≡ 2mX0V0/~:

ζ = κ2(3Iκ + κ)/(2 + κ Iκ)
2, 0 ≤ Iκ < 1. (46)

By (46) and through ζ, the width parameter κ of the wave function is im-
plicitely defined in terms of the initial data. Large values of ζ imply large
values of κ. With the aid of (45), we derive the asymptotic approximation

κ(4) = ζ + (7/2)η − (43/4)η2 + (101/8)η3 + (1957/32)η4, η = 1/ζ. (47)

The relative errors for ζ = {5, 10, 100} are of the order ∆κ ≡ κ − κ(4) ≈
{2× 10−2, 3× 10−4, 4× 10−10}.

5 Energy conservation

In [12], where the mean initial velocity was orthogonal to the mean initial
position vector, the parameter γ0 was related to the orbit eccentricity e with
γ2

0 = (e + 1) [ν2(e− 1)]
−1

for e > 1. The crucial point was the requirement of
energy conservation with respect to w. In the following, we will fix γ0 from
energy conservation to leading order in κ. Principally, γ0 could turn out as
w-dependent. But to our surprise, the parameter comes out being constant to
leading and next higher (not shown in this article) order in κ.

Clearly, E ≡ 〈H〉 is constant in time provided that the initial state evolves
by the unitary operator exp[−iHt/~]. Since we will assume that time de-
pendence of the wave function enters exclusively through the curve parameter
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w = w(t), we require that the mean energy does not depend on the curve
parameter w in some interval 0 ≤ w < w1.

We have to determine the following mean value:

E := 〈ψw|Hψw〉, H =
m

2

(
v2
x + v2

y + v2
z

)
+
α

r
. (48)

From the mean value of 〈vx〉, see (42), it is seen that, to leading order, E is
proportional to κ2, which implies the perturbative ansatz

E = κ2E0(w) +O(κ). (49)

By the ”macroscopic principle” explained in the Introduction, the calculation
of 〈v2

i 〉 is reduced to the the mean values of vi, i.e., to leading order in κ, we
can use the relations

〈v2
x〉 = 〈vx〉2, 〈v2

y,z〉 = 〈vy,z〉2 = 0. (50)

Thus, we obtain with the aid of (42) and (24)

κ2E0(w) =
~2κ2

8mX2
0γ

2
0

(
γ0σ cosh(w) + sinh(w)

cosh(w) + γ0σ sinh(w)

)2

+

(α/X0) [cosh(w) + γ0σ sinh(w)]−2 . (51)

We require that ∆E0 does not depend on w:

∆E0 : = κ2[E0(w)− E0(0)] = EN/ED,

EN = (1/2)G1

[
−(1 + γ2

0) + (1 + γ2
0) cosh[2w] + 2γ0σ sinh(2w)

]
,

ED = 8mX2
0γ

2
0 [cosh(w) + γ0σ sinh(w)]2 ,

G1 = −8mX0αγ
2
0 − ~2κ2(γ2

0 − 1). (52)

Obviously, ∆E0 = 0, if G1 = 0 which, with the scaling α → β and α = κ2β,
implies

γ2
0 ≡ λ2 = ~2κ2/(~2κ2 + 8mX0α) = ~2/(~2 + 8mX0β). (53)

By (47), we can express ~κ in terms of the initial position and speed X0 and
V0, respectively, which is to leading order

~κ = ~ζ = 2mX0V0 (54)

with the consequence that

λ2 =
(m/2)V 2

0

(m/2)V 2
0 + α/X0

=
E

(0)
kin

E0

(55)
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which is the quotient of the initial kinetic energy E
(0)
kin and the initial total

energy E0. If E0 ≥ 0, then λ2 > 0; else λ is purely imaginary and requires that
the curve parameter w has to be analytically continued to purely imaginary
values , w → i w̃, as in the case of elliptic orbits [12].

For negative mean energy, in order that 〈x〉 initially increases for w̃ ≥ 0

and σ = +1, one has to choose the sign of
√
λ2 ≡

√
−λ̃2 as follows:

γ0 = −i λ̃, λ̃2 = mV 2
0 /(2|E0|), E0 < 0, λ̃ > 0. (56)

We obtain from (35) and (42) to leading order in κ

〈x〉 = X0

[
cos(w̃) + λ̃ σ sin(w̃)

]2

, (57)

〈vx〉 =
V0

λ̃

λ̃σ cos(w̃)− sin(w̃)

cos(w̃) + λ̃σ sin(w̃)
, λ̃ > 0. (58)

As it is observed from the leading order expressions (57) and (58), 〈x〉 ≥ 0,
and when 〈x〉 = 0, which is the singular center, then 〈vx〉 = ∞ and changes
sign. This describes an oscillating mean motion between the maximal elonga-
tion 〈x〉max = (1 + λ̃2)X0 and the force center, where the mean trajectory is
reflected.

6 Time dependence

For the given Hamiltonian, the commutator relation dx/(dt) ≡ (i /~)[H, x] =
px/m = vx implies the necessary condition

d〈x〉/(dt) = 〈vx〉, (59)

which is true for any initial state which evolves by the operator exp[−iHt/~].
As a consequence of (59), one obtains the following first order differential
equation for w(t):

∂tw ≡ F (w) = 〈vx〉/(∂w 〈x〉). (60)

In order that w and t are in 1-1 relation, we require that

∂tw > 0 for w ∈ (0, wc), wc > 0. (61)

The critical interval limit, wc, is determined by the property that ∂tw changes
sign the first time for w > 0. With the aid of (54), one derives from (60) for
positive mean energy, using (35) and (42), and for negative energy, using (57)
and (58), to leading order in κ,

∂tw =
V0

2X0λ
[cosh(w) + λσ sinh(w)]−2 > 0, E0 > 0 (62)

∂tw̃ =
V0

2X0λ̃
[cos(w̃) + λ̃ σ sin(w̃)]−2 > 0, E0 < 0, (63)
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which tells that the curve parameters w and w̃ are in 1-1 correspondence with
t for all t ≥ 0.

It is convenient to introduce the time constant T0,

T 2
0 = mX2

0/(2|E0|) = (X0/V0)2|λ|2, (64)

together with the dimensionless length, time, and velocity magnitudes ξ, τ ,
and ηx, respectively, which are defined as

x = X0ξ, t = T0τ, vx = (X0/T0)ηx ≡ (V0/|λ|)ηx. (65)

In the case E0 > 0, the following dimensionless mean values result from (35)
and (42) to leading order in κ

〈ξ〉 = [cosh(w) + λσ sinh(w)]2 ; (66a)

〈ηx〉 =
λσ cosh(w) + sinh(w)

cosh(w) + λσ sinh(w)
, E0 > 0. (66b)

For negative mean energy, one writes (57) and (58) in the dimensionless forms

〈ξ〉 =
[
cos(w̃) + λ̃ σ sin(w̃)

]2

; (67a)

〈ηx〉 =
λ̃σ cos(w̃)− sin(w̃)

cos(w̃) + λ̃σ sin(w̃)
, E0 < 0. (67b)

6.1 Positive mean energy

From (60) and (66), and using the relation T0 = X0λ/V0, we obtain

w′(τ) = (1/2) [cosh(w) + σλ sinh(w)]−2 . (68)

Integration proceeds by separation of variables. For the initial condition
w(0) = 0, we obtain the following analog to Kepler’s equation:

τ = w(1− λ2) + 2σλ sinh2(w) + (1 + λ2) cosh(w) sinh(w), λ > 0. (69)

It should be noticed that for positive mean energy λ > 1, if the potential is
attractive, otherwise, in the repellent case, 0 < λ < 1.

In order that w is a proper curve parameter, it should be in one to one
correspondence with time τ . This is the case for w ≥ 0, since by (68) w′(τ) > 0
for w ≥ 0 both for σ = 1 and σ = −1. The case σ = 1 is physically obvious,
since the initial speed is in the opposite direction to the force center, so the
mass point monotonically escapes to infinity. In the case σ = −1, the mass
point starts to move towards the force center at x = 0, where, if the potential
is attractive, w = ws = tanh−1(1/λ). The velocity at ws is infinite, and there
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is backscattering with the velocity, given in (66b), reversed and the mass point
continues to move towards an arbitrarily large distance x > 0. From (69),
we infer the scaled time τs elapsed between start and the instance of back
scattering, this means the time which corresponds to the interval w ∈ (0, ws).
With the aid of the formulas,

cosh[tanh−1(1/λ)] = λ(λ2 − 1)−1/2, sinh[tanh−1(1/λ)] = (λ2 − 1)−1/2, (70)

one finds for an attractive potential with λ > 1

τs = λ+ (1− λ2) tanh−1 (1/λ) , λ2 ≡ mV 2
0 /(2E0) > 1, σ = −1. (71)

6.2 Negative mean energy

The case E0 < 0 is possible only for an attractive potential. From (60) and
(67), we infer

w̃′(τ) = (1/2)
[
cos(w̃) + σλ̃ sin(w̃)

]−2

, λ̃2 = mV 2
0 /(2|E0|) > 0. (72)

Integration leads to the following analog to Kepler’s equation:

τ = w̃(1 + λ̃2) + (1− λ̃2) cos(w̃) sin(w̃) + 2σλ̃ sin2(w̃), w̃ ≥ 0. (73)

The instances of hitting the singularity are at

0 < w+ = − arctan(1/λ̃) + nπ, n = 1, 2, . . . if σ = 1, (74)

0 < w− = arctan(1/λ̃) + nπ, n = 0, 1, . . . if σ = −1. (75)

There is periodic bouncing back at ξ = 0 with the period ∆w = π, which
corresponds to the time period

∆T = π T0(1 + λ̃2), (76)

independent of σ = ±1. By (72), w̃′(τ) > 0 which guarantees that τ and w̃
are 1-1 correspondence for w̃ ≥ 0, this means over arbitrary many periods.

7 Comparison with classical mechanics

We solve the classical one-dimensional equation of motion for the rectilinear
case without the attempt of regularizing the Coulomb potential. At the branch
points the solution will be ambiguous which is in contrast to the classical limit
of the quantum theory presented above. Due to the branch points, we will
have to distinguish quite some special cases.
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We start from energy conservation

m

2

(
dx

dt

)2

+
α

x
= E0, (77)

where E0 is the initial energy, a first integration constant. Note that α is
negative in the case of an attracting interaction. In terms of the dimensionless
magnitudes defined in (64) and (65), one obtains(

dξ

dτ

)2

+
µ

ξ
= η, η = ±1, (78)

where

µ = α/(X0|E0|), η = sign(E0) = ±1. (79)

From (78), we infer the first order differential equation

dξ

dτ
= σ

√
ηξ − µ
ξ

(80)

with the initial initial conditions

ξ(0) = 1, [dξ/(dτ)]τ=0 = σ |λ|, σ = ±1, (81)

where the following connection between λ and µ was used:

|λ|2 + µ = η ≡ sign(E0). (82)

We assume the initial point at a positive coordinate always and restrict to
intervals which do not contain the singular point ξ = 0 or turning points (if
the energy E0 is negative). Since (dξ/(dτ)2 ≥ 0, we have the inequalities

(i) : ηξ − µ > 0; (ii) : ξ > 0; (iii) : dτ > 0, (83)

where (iii) implies motion in forward time. The integration of (80) is elemen-
tary by separation of variables. Implementing the initial condition ξ = 1 at
τ = 0, we obtain

τ(ξ) = σ

[√
ξ(ξ − µ)− λ+ µ ln

(√
ξ +
√
ξ − µ

1 + λ

)]
, µ = 1− λ2

ξ ≥ 1 for σ = 1; ξ0 < ξ ≤ 1 for σ = −1, E0 > 0, (84)

where the lower boundary ξ0 = 0, if the potential is attractive with λ2 > 1,
else ξ0 = 1 − λ2, if the potential is repellent with λ2 < 1. For negative mean
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energy, we obtain

τ(ξ) = σ

{
λ̃−

√
ξ(−ξ − µ)− µ

[
arctan

(√
ξ

−ξ − µ

)
−

arctan

(
1

λ̃

)]}
, E0 < 0, µ = −1− λ̃2;

1 ≤ ξ < 1 + λ̃2 for σ = 1; 0 < ξ ≤ 1 for σ = −1. (85)

The results for τ(ξ) can be easily verified by differentiation of (84) and (85)
with respect to τ and by taking into account (80).

As to the definition domains, some comments are in order. The functions
above have branch points which reflect the 1/r singularity at ξ = 0 and the
turning points where the velocity is zero in the case of negative energy. The
definition domains are restricted above to the basic intervals without the at-
tempt of analytic continuation beyond the branch points.

If σ = 1 and E0 > 0, then, by (66a), the coordinate ξ, and by (85), the
time τ monotonously increase towards infinity, whereas for σ = −1 the initial
motion is towards the singularity at ξ = 0; in order to describe backscattering,
one would have to analytically continue properly at the branch point ξ = 0. In
the case of negative energy E0 < 0, one also would have to properly deal with
the branching at the turning point in order to describe periodic oscillation.

For comparison, the parametric representation by the quantum mechanical
treatment above avoids the complication with branch-points; it continuously
describes the complete trajectories over an arbitrary time span.

In Appendix B, proofs are given for the equivalence of the quantum limit,
outlined above, and the classical mechanics results in two cases: (I) E0 > 0
with σ = 1, and (II) E0 < 0 with σ = −1. There are two further cases,
each with opposite σ to (I) and (II). They may be easily checked numerically.
To this end, one starts with any proper curve parameter w = w1 > 0 and
determines the position ξ = ξ(w1), which by (84) or (85 ) delivers the classical
time τcl = τ(ξ) = τ(ξ(w1)). The corresponding quantum mechanical time
τqu = τ(w1) is determined from (69) or (73).

8 Summary

For rectilinear motion, mean values are quantum mechanically derived in the
macroscopic limit κ = mX0V0/~→∞. The trajectories are described in terms
of a curve parameter which is in 1-1 relation with time t. In the case of a head-
on collision, the theory predicts backscattering. If the mean energy is negative,
the mass point oscillates between the target (force center) and a turning point;
it stays on the same side of the force center always. For comparison, the
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classical trajectories are obtained from a one-dimensional Hamiltonian without
regularization of the (1/r) potential. There appear branch points where the
solutions are ambiguous. Within continuous intervals, which do not include
the branch points, the equivalence of the quantum and the classical result is
proved analytically.

Acknowledgements. The author expresses his gratitude to Jürgen Parisi
for his constant encouragement and support. He also profited from his critical
reading of the manuscript.

A Calculation of mean values

A.1 Normalization condition

1 ≡ 〈ψw|ψw〉 =

∫ 2π

0

dφ

∫ ∞
−∞

(8u2)du1...du4 Ψ∗w(Φ′)Ψw(Φ)

= −8π2C2

∫ 2π

0

dφ ∂Γ

{
(1/Γ2) exp [(A ·A)/(4Γ)]

}
(86)

= 2π2C2

∫ 2π

0

dφ
{

(1/Γ4) [(A ·A) + 8Γ] exp [(A ·A)/(4Γ)]
}

Γ→ΓR
.

The definition of A, given by (14) and (15), implies that

(A ·A)/(4ΓR) = K [κ0 + κ1 cos(φ)] , K = r0ΓR. (87)

The φ integral is expressed in terms of the modified Bessel functions I0 and I1

as ∫ 2π

0

dφ cos(φ)n exp [Kκ1 cos(φ)] = 2πIn(κ), n = 0, 1, (88)

where we made use of the property that

Kκ1 = κ ≡ r0Γ0. (89)

Eventually, we obtain

1 ≡ 2(2πr0/K)3C2 exp(K κ0)I0(κ) [κIκ + 2 +Kγ0σ sinh(2w)] , (90)

where Iκ is defined in (21)
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A.2 Mean x component

We use x = 2(u1u3 − u2u4) and proceed in analogy to Appendix (B1) of [12].

〈x〉 = C2

∫ 2π

0

dφ

∫ ∞
−∞

(8u2)du1...du4 2(u1u3 − u2u4) exp
[
A · u− Γu2

]
= −16C2 ∂

∂Γ

∫ 2π

0

dφ

∫ ∞
−∞

du1...du4

[
∂2

∂A1∂A3

− ∂2

∂A2∂A4

]
exp

[
A · u− Γu2

]
= −16π2C2 ∂

∂Γ

∫ 2π

0

dφ

[
∂2

∂A1∂A3

− ∂2

∂A2∂A4

]
1

Γ2
exp [A ·A/(4Γ)] . (91)

After carrying out the parameter differentiations and making us of the sym-
metry (16), we obtain

〈x〉 =
2π2C2

Γ6
R

∫ 2π

0

dφA12 (A12 + 8ΓR) exp [A12/(2ΓR)] , (92)

where

A12 = A2
1 + A2

2 = 2ΓRK (κ0 + κ1 cos(φ)) . (93)

After setting ΓR = K/r0, we obtain

〈x〉 = 8π2r4
0K
−3C2 exp(Kκ0)

2∑
j=0

∫ 2π

0

dφ cj cosj(φ) exp (κ cos(φ)) (94)

= π
(
4πr2

0

)2
K−3C2 exp(Kκ0)I0(κ) [c0 + c1Iκ + c2 (−Iκ/κ+ 1)] ,

which is the result (30) with the coefficients c0, c1, c2 given in (31).

It is easily seen that the analogous integrands of 〈y〉 and 〈z〉 contain the
factors Fy and Fz defined in (28) and, thus, vanish identically.

A.3 Mean velocity

According to [12], the velocity observable in u space reads

vj = ~/(2im)Dj, j = x, y, z, (95)

with

Dx = (1/u2) [u3∂u1 − u4∂u2 + u1∂u3 − u2∂u4 ] ,

Dy = (1/u2) [u4∂u1 + u3∂u2 + u2∂u3 + u1∂u4 ] ,

Dz = (1/u2) [u1∂u1 + u2∂u2 − u3∂u3 − u4∂u4 ] . (96)
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From Appendix (C1) of [12], we take over the mean value integral in slightly
modified form,

〈Dx〉 = 4C2

∫ 2π

0

dφ

∫ ∞
−∞

du1du2du3du4 exp
[
a∗(Φ) · u− Γ∗u2/2

]
×{

[u3∂u1 − u4∂u2 + u1∂u3 − u2∂u4 ] exp
[
a(Φ′) · u− Γu2/2

]}
= −4C2

∫ 2π

0

dφ

∫ ∞
−∞

du1du2du3du4 [u3 (a1 − Γu1)− u4 (a2 − Γu2) +

u1 (a3 − Γu3)− u2 (a4 − Γu4)] exp
[
A · u− ΓRu

2
]
. (97)

It is observed that the metric factor u2 cancels out against the (1/u2) factor
of the operator Dx. After generating the polynomial ui factors by parameter
differentiation with respect to Ai, the Gaussian ui integrals are performed.
Analogous expressions are obtained for 〈Dy〉 and 〈Dz〉. Intermediate results
are stated in (36) and (37). The evaluation of 〈vx〉 proceeds straightforwardly
to give the result (39) with (40).

A.4 Mean reciprocal distance

Since 1/r = 1/u2, the metric factor u2 cancels out; furthermore, there are
no polynomial ui factors to be generated by parameter differentiation. One
obtains straightforwardly the results stated in Sec.III. B.

B Proof for the equivalence of leading order

quantum and of classical mechanics

In the following, we prove analytically the equality of the classical and quantum
mechanical result (of leading order in κ) for the time τ in two cases: (I) E0 > 0
with σ = 1 and (II) E0 < 0 with σ = −1.

B.1 Case (I)

We compare the result (69) for τ = τ(w) with the result (84) for τ = τ(ξ).
The basic definition interval of (84) for σ = 1 is ξ ≥ 1 which corresponds to
the interval of the curve parameter w ≥ 0. In order to invert the function
ξ(w) for w, see (66a), we take the square root and substitute (1/2)(u + 1/u)
for cosh(w) and (1/2)(u − 1/u) for sinh(w) with u = exp(w). We solve the
following equation for u:√

ξ = (1/2) [u+ 1/u+ λ(u− 1/u)] (98)
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with the result

u =

√
ξ +

√
λ2 − 1 + ξ

1 + λ
, w = ln(u). (99)

When (69) is compared with (84), it is observed that the first term on the right
hand side of (69) and the second term of the right hand side of (84) correspond
and by (99) are equal to one another:

w(1− λ2) ≡ (1− λ2) ln
[
(
√
ξ +

√
λ2 − 1 + ξ)/(1 + λ)

]
, (100)

where we used the relation µ = 1 − λ2. The following identity remains to be
shown in the intervals ξ ≥ 1, w ≥ 0, σ = 1, and λ > 1:

2λ sinh(w)2 + (1 + λ2) cosh(w) sinh(w) ≡
√
ξ(λ2 − 1 + ξ)− λ. (101)

This can be seen, for instance, by squaring both sides of (101) and by inserting
on the left hand side (1/2)(u+1/u) for cosh(w) and (1/2)(u−1/u) for sinh(w),
and eventually using (99) to express u by ξ.

B.2 Case (II)

For σ = −1, we have to compare the result (73) with τ = τ(w̃) and (85) with
τ = τ(ξ). The definition domains of (85) are 0 < ξ ≤ 1 with 0 ≤ w̃ < π/2,
where the latter inequality is due to the fact that at ξ = 0 the velocity gets
infinite which by (67b) occurs if tan(w̃) = 1/λ̃.

We invert ξ(w̃) for w̃. By (67a), we solve the equation

0 =
√
ξ −

[√
1− S2 − λ̃S

]
, S = sin(w̃), (102)

for S, and obtain

sin(w̃) ≡ S =

[√
1 + λ̃2 − ξ − λ̃

√
ξ

] [
1 + λ̃2

]−1

,

cos(w̃) ≡
√

1− S2 =

[
λ̃

√
1 + λ̃2 − ξ +

√
ξ

] [
1 + λ̃2

]−1

. (103)

Using tan(w̃) = sin(w̃)/ cos(w̃), we derive with the aid of (104)

tan(w̃) ≡ A =

[√
1 + λ̃2 − ξ − λ̃

√
ξ

] [
λ̃

√
1 + λ̃2 − ξ +

√
ξ

]−1

. (104)

The following terms of (73) and (85) are identical for σ = −1 and µ = −(1+λ̃2):

w̃(1 + λ̃2) ≡ −(1 + λ̃2)

[
arctan

(√
ξ

−ξ − µ

)
− arctan

(
1

λ̃

)]
. (105)
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For verification, one inserts on the left hand side arctan(A) according to
(104); furthermore, one applies the addition formula arctan(a1)+arctan(a2) =
arctan ((a1 + a2)/(1− a1a2)). The remaining terms of (73) and (85) have to
obey the identity

(1− λ̃2) cos(w) sin(w)− 2λ̃ sin(w)2 ≡
√
ξ(1 + λ̃2 − ξ)− λ̃. (106)

On the left hand side, one substitutes the results of (103) for the trigonometric
functions and obtains the right hand side after elementary rearrangements.
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