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Abstract

Bianchi type-I cosmological model with a maximally coupled real
massive scalar field is investigated. We obtain, using an ad-hoc mathe-
matical relation and a standard theory on first order differential equa-
tions, global solutions to the Einstein’s field equations both at early
and late cosmic times. The physical and geometrical behaviors of the
cosmological model are also discussed.
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1 Introduction

Our actual Universe is described by all recent observations to be in an ac-
celerated expansion. This Universe is also geometrically described by the
Freedman-Lemaitre-Robertson-Walker(FLRW) models where the expansion
is the same for any direction. In this paper, we will be interested in a ge-
ometry described by the Bianchi type-I cosmological anisotropic models, for
which the expansion of Universe is not the same according to the direction
of observation. Concerning the matter content, we consider only the pres-
ence of scalar fields in the Universe. A massive scalar fieldφ whose mass is
denoted by m; and whose contribution to the energy-momentum tensor is de-
fined by the standard tensor φ;µφ;ν − 1

2
gµνφ;αφ

;α + 1
2
m2φ2gµν , on the one hand;

and an additional coupling of the scalar field to the curvature, whose cou-
pling term is Rφ2 and whose contribution to the energy-momentum tensor is
2
[
gµν�φ2 − (φ2);µν

]
+ 2

[
Rµν − 1

2
gµνR

]
φ2. The scalar field is then said to be

maximally coupled. A scalar field is in fact a function which associates at each
spatial-temporal point a number. A good example can be the temperature of
a room : for each point of a room, one can associate a quantity T defining
its temperature. The physical interest of scalar fields and Bianchi models is
based on the fact that the study of the related Einstein-scalar field equations
can help us to give a better description of the physical and geometrical prop-
erties of those models in order to confirm or discard the actual observations
concerning the expansion and the acceleration of Universe.

We will see in our investigations that, the cosmological constant is not alone
the most serious and natural candidate for explaining the cosmic acceleration of
Universe[5− 6] . A wide range of observations has suggested that the Universe
possesses a non-zero cosmological constant Λ, which is considered as a measure
of the energy-density of the vacuum[6] .

But we reach the conclusion that, in the absence of the cosmological con-
stant, all the scale factors which are important for cosmological observations
are still monotonic functions of cosmic time. This shows that the cosmological
evolution of our models is in expansion or in inflation.

Instead of using only the method followed by Bali and Jain[2] , Sharif and
Zubair [3] , Adhav et al.[4] who used the physical condition that the shear
scalar is proportional to the expansion scalar, we follow Hajj-Boutros [1]by
using an ad-hoc reasonable mathematical relation. The advantage is that this
method leads us almost to the same relation between the metric potentials A
and B subject to the Einstein equations, obtained by [2− 3− 4] and also gives
us physically realistic solutions of the field variables in term of the scalar field.

Several authors have studied for a long time Bianchi models and various
scalar-tensor theories[7− 16] .The most relevant thing we bring in this work is
that we have additionally coupled the scalar field to the curvature and we have
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obtained, using a standard theory on ordinary differential equations, a global
in time solution of our model both at early and late times. We have also seen
that the model can reach a big-bang period since, in our investigations, we have
proved that the model passes through inflation epoch or expansion one.

The paper organizes as follows :
In section 2, we present the metric and the field equations.
In section 3, we investigate solutions to the field equations.
In section 4, we discuss about the behavior of the model obtained.

2 The metric and field equations

We consider the spatially homogeneous and anisotropic Bianchi type-I metric
in the form:

ds2 = −dt2 + A2dx2 +B2
(
dy2 + dz2

)
(1)

where A,B are functions of cosmic time t alone.
The energy-momentum tensor for a maximally coupled and massive real

scalar field in vacuum is of form:

Tµν = φ;µφ;ν−
1

2
gµνφ;αφ

;α+
1

2
m2φ2gµν+2

[
gµν�φ

2 −
(
φ2
)
;µν

]
+2

[
Rµν −

1

2
gµνR

]
φ2

(2)
in which φ stands for the real massive scalar field whose mass is denoted

by m > 0.
The corresponding Lagrangian writes :

L =
1

2
gµνφ;µφ;ν −

1

2
m2φ2 +Rφ2 (3)

where Rφ2 is the coupling term and induces the following contribution to
the energy-momentum tensor:

4Tµν = 2
[
gµν�φ

2 −
(
φ2
)
;µν

]
+ 2

[
Rµν −

1

2
gµνR

]
φ2. (4)

Notice that φ is always subject to the equation of motion ∂L
∂φ

= 0 which
reads:

�φ+mφφ̇− 2φR = 0, (5)

where, here and in what follows, a dot denotes the derivative with respect
to t.
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The Einstein-Maximally coupled massive real scalar field system of equa-
tions ( with 8πG = 1)

Rµν −
1

2
gµνR = Tµν (6)

together with equation (2) for the line-element (1) lead to:

(
1− 2φ2

)2
ȦḂ

AB
+

(
Ḃ

B

)2
 =

φ̇2 −m2φ2

2
+ 4φφ̇

(
Ȧ

A
+ 2

Ḃ

B

)
(7)

(
1− 2φ2

)2
B̈

B
+

(
Ḃ

B

)2
 = − φ̇

2 +m2φ2

2
+ 4

(
φ̇2 + φφ̈+ 2

Ḃ

B
φφ̇

)
(8)

(
1− 2φ2

)(B̈
B

+
Ä

A
+
ȦḂ

AB

)
= − φ̇

2 +m2φ2

2
+ 4

(
φ̇2 + φφ̈+

(
Ȧ

A
+
Ḃ

B

)
φφ̇

)
.

(9)
The equation (7) is the Hamiltonian constraint, and it is well known that

this equation is automatically satisfied if the initial data A0 = A (0) , B0 =
B (0) , Ȧ0 = Ȧ (0) , Ḃ0 = Ḃ (0) , φ0 = φ (0) , φ̇0 = φ̇ (0) verify the equation:

(
1− 2φ2

0

)2
Ȧ0Ḃ0

A0B0

+

(
Ḃ0

B0

)2
 =

φ̇0
2 −m2φ2

0

2
+ 4φ0φ̇0

(
Ȧ0

A0

+ 2
Ḃ0

B0

)
. (10)

One requires in what follow that the initial data verify equation (10) .
Now we define some parameters for the Bianchi type-I model which show

useful in cosmological observations.
The average scale factor a and the spatial volume of Universe V are defined

as:

V = a3 = AB2. (11)

The expansion scalar θ and shear scalar σ2 are given by the following ex-
pressions:

θ =
Ȧ

A
+ 2

Ḃ

B
, (12)

σ2 =
1

3

(
Ȧ

A
− Ḃ

B

)2

. (13)
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We also define the generalized mean Hubble parameter H by:

H =
ȧ

a
=

1

3
(H1 +H2 +H3) , (14)

where H1 = Ȧ
A
, H2 = H3 = Ḃ

B
are the directional Hubble’s parameters in

the directions of x, y and z respectively.
The most physical quantity of observational interest in cosmology is the

deceleration parameter q defined by:

q = −aä
ȧ2

= −1 +
d

dt

(
1

H

)
. (15)

It is important to stress here that the sign of q indicates whether the model
is in inflation or not. The positive value indicates the decelerating model
whereas the negative value shows acceleration.

3 Solutions to the field equations

The system of equations (7)−(8)−(9) is a system of three non-linear differential
equations in three unknowns A,B and φ.

Since the equation (7) is a property of solutions of the other equations
(8) , (9) , and is always verified by any solutions A,B, φ of (8)−(9) , we are going
to use following [1] , and ad-hoc mathematical relation to obtain physically
realistic solutions of the field variables.

From (8) and (9) , we obtain:

(
1− 2φ2

)B̈
B
− Ä

A
+

(
Ḃ

B

)2

− ȦḂ

AB

 = 4

(
Ḃ

B
− Ȧ

A

)
φφ̇. (16)

In fact, equation (16) is automatically verified if we insert the ad-hoc math-
ematical relation:

Ḃ

B
− Ȧ

A
= 0. (17)

Equation (17) integrates to give:

B = c2A, (18)

where c2 6= 1 is a constant of integration, because we are not dealing with
the FLRW model.

Equation (7) , which is always satisfied, reduces then to the following:
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3
(
1− 2φ2

)(Ȧ
A

)2

− 12φφ̇
Ȧ

A
− φ̇2 −m2φ2

2
= 0. (19)

This means that equation (19) which unknown is this time Ȧ
A
, always has

one or two different solutions.
Its possesses a unique solution:

Ȧ

A
=

2φφ̇

1− 2φ2
(20)

if and only if:

22φ̇2φ2 + φ̇2 + 2m2φ4 −m2φ2 = 0. (21)

Equation (21) is a first order differential equation that can be written in
the form:

φ̇ = f (t, φ) , (22)

in which

f 2 (t, φ) =
m2 (φ2 − 2φ4)

1 + 22φ2
. (23)

The relation (23) shows that f is a continuous function of t and locally
Lipschitzian in φ.

By applying the standard theory on first order differential equations, there
exists a maximal interval [−T, T ] , T > 0, such that the equation (22) has a
unique local solution φ defined on [−T, T ] and verifying:

φ (0) = φ0. (24)

Now, it is easily seen by (23) that any solution φ of (22) verifies:

−
√

2

2
≤ φ ≤

√
2

2
. (25)

This proves that φ is uniformly bounded on ]−T, T [ and consequently φ is
global on ]−∞,+∞[ .

By equation (19) , together with relation (18) , A and B are computed to
give:

A =
K2√

1− 2φ2
, B =

K2c2√
1− 2φ2

, (26)

where K2 is a constant of integration.
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This proves that, because φis global, solutions A and B of the Einstein
equations (8)− (9) are also global.

The model (1) then writes:

ds2 = −dt2 +
K4

1− 2φ2
dx2 +

K4c4

1− 2φ2

(
dy2 + dz2

)
. (27)

4 Discussion

We observe first of all that, by equation (21) :

φ̇ = ±

√
m2 (φ2 − 2φ4)

1 + 22φ2
. (28)

This proves that φ is always a monotonic function of time t.
Now by relation (20) , if φ has a constant sign ( this means φ ∈

[
−

√
2
2
, 0
]
or

φ ∈
[
0,

√
2
2

]
), then Ȧ

A
is also always monotonic in time t.

The relations (11) , (12) , (13) , (14) , (17) together with equation (18) show
that:

V = c4A3, θ = 3
Ȧ

A
= 3H, σ = 0. (29)

By relation (25) , φ is bounded, so V is not zero both for finite or large
values of time t, and so the model (27) has no singularity at finite or large
(early and late) times.

If φ has a constant sign, then by (29) all scale factors are monotonically
increasing or decreasing functions of time t, so the model always inflates or
expands.

σ
θ

= 0, so the model does not approach isotropy for large time.
We can not say anything about acceleration or deceleration of the expansion

or the inflation, since we have not investigated about the sign of the parameter
q.

5 Conclusion

In the present paper, we have presented a global solution for the Einstein’s
field equations for a spatially homogeneous and anisotropic Bianchi type-I
space time in the case of a maximally coupled and massive real scalar field.
We have seen that, by making adequate considerations on the scalar field, the
model expands, inflates and is shearing. The cosmological model has no finite
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or large time singularity and does not reach isotropy . Our investigations also
show that the model passes probably through a big-bang epoch.

The present model may be useful to describe the early and late stages
of the evolution of our physical Universe, since, it can explain the vacuum
gravity state, confirm the fact that scalar fields have been present in our earlier
Universe. It also makes possible to understand the mechanism which led the
early Universe to the large scale structure and predicts the fate of the whole
universe.
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