
Advanced Studies in Theoretical Physics
Vol. 9, 2015, no. 15, 701 - 708

HIKARI Ltd, www.m-hikari.com
http://dx.doi.org/10.12988/astp.2015.5986

Dirac Equation with Self Interaction Induced

by Torsion: Minkowski Space-Time

Antonio Zecca 1

Milano University, Physics Department - Via Celoria, 16 - I-20133 Milano
GNFM - Gruppo Nazionale per la Fisica Matematica - Italy

Abstract
A formulation of Dirac equation with non linear self interacting term

induced by torsion is studied in Minkowski space-time. The equation
is made explicit in Cartesian coordinates by a null tetrad frame whose
corresponding van der Waerden matrices are the Pauli matrices. Plane
waves are shown to be solution. They are subject to a constraint relation
that leave only two of them arbitrary. They are determined in a special
case. In the two dimensional space-time one is left with a non linear
Dirac equation whose solution is ensured by existing results. Analytical
solutions are determined in form of standing waves. In the mass less case
there are solutions that propagate with periodic ”burst” of amplitude.
The paper is also an improvement of a previous study.
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1 Introduction

Recently the Dirac equation with self interaction induced by torsion has been
re-considered [16]. The argument has been developed by the two spinor for-
malism and notations of [10]. The procedure according to which that study
was performed is in the line of the massive (torsion free) spin field equation
in curved space-time of [8]. Accordingly the Dirac equation with torsional
self interaction has been obtained by the Euler Lagrange equation from a La-
grangian with an interacting term between the Dirac and the torsion field.
Variations have been there performed with respect to the Dirac spinor and the
components the torsion spinor. No variation has been done with respect to
the metric tensor gµν .
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Such variation would produce an Einstein-Dirac equation whose solution have
problematic aspects. Indeed it has been directly checked, in the torsion free
Robertson-Walker space-time case, that the Einstein-Dirac equation does not
admit standard solutions [15]. It has also been shown that coupling Dirac mat-
ter field with electrodynamics and gravitation with torsion is not compatible
in spherically symmetric space-time ( e. g., [6, 5] and references therein). The
resulting equation according to [16] has the form

[
∇AB′ + i

3

4
α2JAB′

]
PA − iµ∗QA′ = 0 (1)[

∇AB′ + i
3

4
α2JAB′

]
QB′

+ iµ∗PA = 0 (2)

where JAA
′

is the spinor current JAA
′

= (1/
√

2)(PAP
A′

+ Q
A
QA′

), α the
interacting parameter between Dirac and torsion field. ∇AA′ is the usual unique
torsion free covariant derivative induced by gµν . Equivalently, the equation can
be written

∇AB′PA − i√
2

(
mo +

3

4
α2Q

A
PA
)
QB′ = 0 (3)

∇AB′QB′
+

i√
2

(
mo +

3

4
α2QB′

PB′

)
PA = 0 (4)

The equation is the two spinor equivalent (see e. g., [12]) of the 4-spinor
standard formulation of Dirac equation with torsion derived from a Lagrangian
locally invariant under special coordinate change and Lorentz rotations [9].

The validity of the equation is quite general. Unfortunately the solution
does not seem easy even in simple examples of space-time. Explicit solutions
could be however of interest in connection, e. g., to neutrino oscillation [1,
17, 14].

In the present paper the equation is studied in Minkowski space-time in
Cartesian coordinates. Such study is an improvement of a previous one pro-
posed in [13] for a formulation of Dirac equation with torsion in the line of [3].
The procedure employed here is a canonical one in the two-spinor formalism
of Ref. [10]. It is shown that plane waves are solutions if their coefficients,
that are determined in a special case, satisfy a suitable constraint. Existence
of other kind of solutions is discussed in 1+1 dimensions. Solutions of L2-class
there exist according to the convergence of a difference scheme proposed in the
literature [2, 7]. Also analytical solutions exist. In general they have the form
of standing waves whose asymptotic behavior is made explicit and that are
shown to propagate in the mass less case.
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2 Minkowski space-time

Suppose now gµν = diag {1,−1,−1,−1} and choose the null tetrad frame

lµ = 2−
1
2 (1, 0, 0, 1), mµ = 2−

1
2 (0, 1,−i, 0) (5)

nµ = 2−
1
2 (1, 0, 0,−1), m∗µ = 2−

1
2 (0, 1, i, 0) (6)

The corresponding Infeld-van der Waerden symbols gAB
′

a comes out to be re-
lated to the Pauli matrices σa. Precisely(

gAB
′

a

)>
= gaAB′ =

1√
2
σa, a = 0, 1, 2, 3, σ0 =

(
1 0
0 1

)
(7)

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i o

)
, σ3 =

(
1 0
0 −1

)
(8)

By considering that ∇AA′ = gaAA′∂a, equations (3), (4) read

gaAA′∂aP
A − i√

2

[
m0 −

3

4
α2QAP

A
]
QA′ = 0 (9)

gaAA′∂aQ
A′

+
i√
2

[
m0 −

3

4
α2QA′P

A′]
PA′ = 0 (10)

The equation admits of plane waves solutions:

PA = uA(ka) eikax
a

, QA′ = vA′(ka) eikax
a

(11)

Inserting into (9), (10) by using (7), the uA’s and vA′ ’s obey to

(kaσa)
A′AuA + [mo +

3

4
α2vAuA]vA

′
= 0 (12)

(kaσa)AA′vA
′
+ [mo +

3

4
α2vA

′
uA′ ]uA = 0 (13)

where summation over a is understood both in (12) and (13). By solving (12)
with respect to vA′ and inserting into (13) one finally gets the condition

k2
0 − k2

i = |mo +
3

4
α2 vA

′
(k)uA′(k)|2 (14)

where the property σiσl = εilhσh, (i 6= l) of the Pauli matrices has been used.
Other constraints on the coefficients uA(k), vA′(k) can be made explicit by

developing (9), (10) with (7), (8) to obtain:

(∂0 + ∂3)P 0 + (∂1 + i∂2)P 1 − i[mo +
3

4
α2Q

A
PA]Q0′ = 0 (15)

(∂1 − i∂2)P 0 + (∂0 − ∂3)P 1 − i[mo +
3

4
α2Q

A
PA]Q1′ = 0 (16)

(∂0 + ∂3)Q0′ + (∂1 − i∂2)Q1′ + i[mo +
3

4
α2QA′

PA′ ]P0 = 0 (17)

(∂1 + i∂2)Q0′ + (∂0 − ∂3)Q1′ + i[mo +
3

4
α2QA′

PA′ ]P1 = 0 (18)
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By using (11) in (15)-(18) and taking the complex conjugate of last two re-
sulting equations there follows

(k0 + k3)u0 + (k1 + ik2)u1 − [mo +
3

4
α2vAuA]v0′ = 0 (19)

(k1 − ik2)u0 + (k0 − k3)u1 − [mo +
3

4
α2vAuA]v1′ = 0 (20)

(k0 + k3)v0 + (k1 + ik2)v1 + [mo +
3

4
α2vAuA]u0′ = 0 (21)

(k1 − ik2)v0 + (k0 − k3)v1 + [mo +
3

4
α2vAuA]u1′ = 0 (22)

By performing in (19)-(22) the substitutions

wA = vA, uA → εuA, wA → εwA, ε = (wAuA)−1/2 (23)

and taking the complex conjugate of the last two equations one has


k0 + k3 k1 + ik2 0 C
k1 − ik2 k0 − k3 −C 0

0 −C k0 + k3 k1 − ik2

C 0 k1 + ik2 k0 − k3



u0ε
u1ε
w0ε
w1ε

 =


0
0
0
0

 (24)

where C = mo + (3/4)α2. The condition for the existence of non trivial solu-
tions uAε, wAε is the vanishing of the determinant of the matrix of the coeffi-
cients in (24). This gives

[
k2
o − k2

1 − k2
2 − k2

3 −
(
m2
o +

3

4
α2
)]2

= 0 (25)

that is the condition (14) for vAuA = 1 as it is indeed. One can also check
that the matrix in (24) has rank 2. Therefore only two of the four expressions
uAε, wAε are arbitrary. A property of the plane waves solutions that it is worth
to mention is that they identically satisfy the current conservation equation
∇AA′JAA

′
= 0, that holds in general for the Dirac equation (1), (2) (see e.g.,

[16]). In the present case that property is easily checked from (11) and the
very definition of JAA

′
:

∇AA′JAA
′
=

1√
2
gaAA′∂a(u

AuA
′
+ vA

′
vA) = 0 (26)

The lack of linearity does not allow to construct solutions (e.g., of L2-class) by
superposition of plane waves. Other solutions, however, do exist as it will be
seen in the following.
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3 Explicit value of the coefficients

Suppose u1 = v1′ = 0 and u0 = u0, v0 = v0. One has from (20), (21) k1 =
k2 = 0. The surviving equations (19), (22) give then

u0 = ± v0

√
k0 − k3

k0 + k3

(27)

By distinguishing according to the plus and minus signs in (27) one obtains

u0(+) =

√√√√ 4

3α2

[
mo

√
k0 − k3

k0 + k3

− (k0 − k3)
]

(28)

v
(+)
0 =

√√√√ 4

3α2

[
mo

√
k0 + k3

k0k3

− (k0 + k3)
]

(29)

u0(−) = ∓

√√√√ 4

3α2

[
−mo

√
k0 − k3

k0 + k3

− (k0 − k3)
]

(30)

v
(−)
0 = ±

√√√√ 4

3α2

[
−mo

√
k0 − k3

k0 + k3

− (k0 + k3)
]

(31)

u0(±)v
(±)
0 =

4

3α2

∣∣∣mo ∓
√
k2

0 − k2
3

∣∣∣ (32)

Therefore the coefficients are completely determined as it must be according
to the previous results.

4 Reduction to 1+1 dimensions

As to the problem of the existence of non plane waves solutions a positive
answer is given by the following considerations. Suppose

PA ≡ (P 0, P 1), QA′ ≡ (P 1, P 0) (33)

then equations (17), (18) are a duplicate of (15), (16). By further assuming
P 0 ≡ P 0(t, z), P 1 ≡ P 1(t, z) in (15) , (18) one is left with

(∂t + ∂z)P
0 = i[mo − (3/4)α2(P 0P

1
+ P 1P

0
)]P 1 (34)

(∂t − ∂z)P 1 = i[mo − (3/4)α2(P 0P
1

+ P 1P
0
)]P 0 (35)

By summing and subtracting one obtains (ψ1 = P 0 + P 1, ψ2 = P 0 − P 1):

∂tψ1 + ∂zψ2 + imψ1 + 2iλ(ψ2ψ2 − ψ1ψ1)ψ1 = 0 (m = −m0) (36)

∂tψ2 + ∂zψ1 − imψ2 + 2iλ(ψ1ψ1 − ψ2ψ)ψ2 = 0 (2λ = −3α2/8) (37)
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that is a well known Dirac equation in 1+1 dimensions (e.g., [2]). The time de-
pendence can be easily separated by the substitutions ψ1 → ψ1(z) exp(ikt), ψ2 →
ψ2(z) exp(ikt) (k ∈ R). One is then left with a pair of coupled nonlinear dif-
ferential equations in the z variable.

The equation (36)-(37) has been studied by a difference scheme that con-
verges in the discrete L2-norm. Numerical applications of the difference scheme
show that, according to initial data, there is a formation of a final state to-
gether with a solitary wave [2].

Here standing wave solution can be determined by setting:

ψ1 = A(z)e−iΛt, ψ2 = iB(z)e−iΛt (A = A, B = B) (38)

From (36)-(38) A, B satisfy the coupled non linear equations

B′ + (m− Λ)A− 2λ(A2 −B2)A = 0 (39)

A′ + (m+ Λ)B − 2λ(A2 −B2)B = 0 (40)

that give (se e. g., [11, 2, 7]):

A =
4

α
√

3

√
(m2

o − Λ2)(m0 − Λ) cosh (z
√
m2

0 − Λ2)

[Λ cosh (2z
√
m2

0 − Λ2)−m0]
(41)

B =
4

α
√

3

√
(m2

0 − Λ2)(m0 + Λ) sinh (z
√
m2

0 − Λ2)

[Λ cosh (2z
√
m2

0 − Λ2)−m0]
(42)

P 0 z→±∞−→ 2e−iΛt

αΛ
√

3

{√
m0 − Λ± i

√
m0 + Λ

}
e−|z|
√
m2

0−Λ2

z→±∞−→ 0 m0 > |Λ| (43)

P 1 z→±∞−→ 2e−iΛt

αΛ
√

3

{√
m0 − Λ∓ i

√
m0 + Λ

}
e−|z|
√
m2

0−Λ2

z→±∞−→ 0 m0 > |Λ| (44)

Therefore P 0, P 1 vanishes exponentially for large |z| if m0 > |Λ|.
If 0 < m0 < Λ, by setting P 0 ≡ P+, P 1 ≡ P− one has

P± =
2e−iΛt

√
Λ2 −m2

0

α
√

3
[
Λ cos

(
2z
√

Λ2 −m2
0

)
−m0

] ×
×
{√

Λ−m0 cos
(
z
√

Λ2 −m2
0

)
∓ i

√
Λ +m0 sin

(
z
√

Λ2 −m2
0

)}
(45)

If Λ < −m0 < 0 one has

P± =
−2ie−iΛt

√
Λ2 −m2

0

α
√

3
[
|Λ| cos

(
2z
√

Λ2 −m2
0

)
+m0

] ×
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×
{√
|Λ|+m0 cos

(
z
√

Λ2 −m2
0

)
± i

√
|Λ| −m0 sin

(
z
√

Λ2 −m2
0

)}
(46)

If m0 = 0 one obtains by the last results

P 0 =
2

α

√
Λ

3

e−iΛ(z+t)

cos(2zΛ)
, P 1 =

2

α

√
Λ

3

eiΛ(z−t)

cos(2zΛ)
, Λ > 0 (47)

P 0 =
−2i

α

√
|Λ|
3

e−iΛ(z+t)

cos(2zΛ)
, P 1 =

−2i

α

√
|Λ|
3

eiΛ(z−t)

cos(2zΛ)
, Λ < 0 (48)

In the static case (Λ = 0) one has:

P± =
2

α

√
m0

3
(coshm0z ∓ i sinhm0z) (49)

It is worth noting that in the massless case the solutions P 0, P 1 propagate in
the opposite z-direction by periodically changing the amplitude in the spatial
coordinate.

The main object of the present study was to point out that the nonlin-
ear Dirac equation (1)-(4) introduced in [16] is physically meaningful. In
Minkowski space-time, it contains a familiar nonlinear Dirac equation whose
solution has been considered in the 1 + 1 dimensions. Such equation has re-
cently received increasing attention both in physics and mathematics (see, e.g.,
[7, 4] and references therein).
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