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Abstract

Hawking’s proposal that the Universe has no temporal boundary and
hence no beginning depends on the notion of imaginary time and is usu-
ally referred to as the no-boundary proposal. This paper discusses a sim-
ple alternative approach by means of the five-dimensional Friedmann-
Lemâıtre-Robertson-Walker model.

PAC numbers: 04.20.-q, 04.50.+h

Keywords: no-boundary proposal, FLRW model

1 Introduction

It is well known that Stephen Hawking introduced the no-boundary proposal
using the concept of imaginary time, making up what is called Euclidean space-
time [1]. While ordinary time would still have a big-bang singularity, imagi-
nary time avoids this singularity, implying that the Universe has no temporal
boundary and hence no beginning. By eliminating the singularity, the Uni-
verse becomes self-contained in the sense that one would not have to appeal
to something outside the Universe to determine how the Universe began.
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Given that imaginary time is orthogonal to ordinary time, one could view
imaginary time as an extra dimension. The existence of an extra dimension
suggests a different starting point, the five-dimensional Friedmann-Lemâıtre-
Robertson-Walker model (FLRW) [2]. This model produces a simple alterna-
tive version of the no-boundary proposal.

2 The FLRW model

Let us recall the FLRW model in the usual four dimensions [3]:

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2θ dφ2)

]
, (1)

where a2(t) is a scale factor. Here K = 1/R2, where

R =
√
x2 + y2 + z2 + w2; (2)

also, K > 0, K = 0, and K < 0 (imaginary R) correspond to a closed, flat,
and open universe, respectively. For K > 0, the substitution r = 1√

K
sinψ

yields

ds2 = −dt2 + a2(t)R2[dψ2 + sin2ψ(dθ2 + sin2θ dφ2)]. (3)

The spatial part of the metric is a 3-sphere, having neither a center nor an edge.
Here we need to recall that a 3-sphere can be defined as a three-dimensional
boundary of a fictitious four-dimensional ball of radius R, as defined in Eq.
(2). In the discussion below we will assume a unit sphere, i.e., R = 1.

Returning to line element (3), observe that the singularity in line element
(1) has been removed, showing that we are dealing with a coordinate singular-
ity, not a physical one. The case K < 0 does not lead to a singularity. Here the
substitution r = 1√

|K|
sinhψ leads to the analogous line element in hyperbolic

coordinates (with R = 1):

ds2 = −dt2 + a2(t)[dψ2 + sinh2ψ(dθ2 + sin2θ dφ2)]. (4)

Turning now to the five-dimensional spatially homogeneous and isotropic
FLRW metric, we have, according to Ref. [2],

ds2 = −dt2 + a2(t)

{
dr2

1−Kr2
+ r2[dψ2 + sin2ψ(dθ2 + sin2θ dφ2)]

}
. (5)

The above substitutions for r now lead to the respective line elements

ds2 = −dt2 + a2(t)
{
dχ2 + sin2χ[dψ2 + sin2ψ(dθ2 + sin2θ dφ2)]

}
. (6)
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and

ds2 = −dt2 + a2(t)
{
dχ2 + sinh2χ[dψ2 + sin2ψ(dθ2 + sin2θ dφ2)]

}
. (7)

The respective spatial parts can be viewed as four-dimensional boundaries of
a five-dimensional unit sphere and a five-dimensional unit hyperboloid.

Ref. [2] makes the usual assumption that any extra spatial dimension has
been compacted to small size in the course of the evolution of the Universe.
Since the extra dimension does not participate in the expansion, more realistic
line elements are obtained by leaving a2(t) in the original position:

ds2 = −dt2 + dχ2 + sin2χ
{
a2(t)[dψ2 + sin2ψ(dθ2 + sin2θ dφ2)]

}
(8)

or

ds2 = −dt2 + dχ2 + sinh2χ
{
a2(t)[dψ2 + sin2ψ(dθ2 + sin2θ dφ2)]

}
. (9)

3 The no-boundary proposal

Stephen Hawking’s proposal that the Universe had no beginning [1] depends
on the notion of imaginary time. If one thinks of ordinary time as a real axis
pointing to the future in one direction and the past in the other, then the
imaginary-time axis is perpendicular to the real-time axis. The main idea in
this note is to show that the existence of an extra spatial dimension can also
lead to the no-boundary proposal.

Since our approach is heavily dependent on the time-component, we first
recall that in geometrized units (G = c = 1) the Schwarzschild line element

ds2 = −
(

1− 2M

r

)
dt2 +

dr2

1− 2M/r
+ r2(dθ2 + sin2θ dφ2)

describes a black hole having an event horizon at r = 2M . Ordinarily, r > 2M .
Inside the event horizon we have r < 2M , so that the first two terms undergo
sign changes. So t becomes spacelike and r timelike, leading to the traditional
argument that motion in the r-direction cannot be reversed, so that escape
from a black hole is impossible.

To show that the time component can also become spacelike in the present
study, let us recall the Lorentzian metric

ds2 = −c2dt2 + dx2 + dy2 + dz2 (signature:−+ + +)

or

ds2 = c2dt2 − dx2 − dy2 − dz2 (signature: +−−−)
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temporarily reintroducing c. (The choice of signature is merely a matter of
convenience.) In spherical coordinates,

ds2 = −c2dt2 + dr2 + r2(dθ2 + sin2θ dφ2)

or
ds2 = c2dt2 − dr2 − r2(dθ2 + sin2θ dφ2).

In the Minkowski system (ict, r, θ, φ), the former can be written

ds2 = (icdt)2 + dr2 + r2(dθ2 + sin2θ dφ2),

thereby retaining the Euclidian form. So the metric (3) becomes (since R = 1)

ds2 = (icdt)2 + a2(t)[dψ2 + sin2ψ(dθ2 + sin2θ dφ2)]. (10)

The general theory of relativity is based on a four-dimensional pseudo-
Riemannian geometry. With an extra spatial dimension, the natural analogue
of a 3-sphere is a 4-sphere or a 4-hyperboloid. To obtain this analogue, we
would have to include (with c = 1 again) both (idt)2 and sin2(it) or both
(idt)2 and sinh2(it) in order to retain the required form of the line element.

Since the extra spatial dimension is not affected by the expansion, the scale
factor a2(t) remains in its original position. However, the forms of the resulting
metrics require an extra term, here denoted by dη2:

ds2 = dη2 + (idt)2 + sin2(it){a2(t)[dψ2 + sin2ψ(dθ2 + sin2θ dφ2)]}. (11)

and

ds2 = dη2 + (idt)2 + sinh2(it){a2(t)[dψ2 + sin2ψ(dθ2 + sin2θ dφ2)]}. (12)

(Using the identities sin (it) = i sinh t and sinh(it) = i sin t, these line elements
could also be written with signatures +−−−− or −+ + + +.) Eqs. (11)
and (12) have the forms of a 4-sphere and a 4-hyperboloid, respectively. The
respective spatial parts therefore represent a four-dimensional boundary of a
five-dimensional ball and hyperboloid. Observe that t has become spacelike.

4 Discussion

The FLRW expanding closed Universe is a 3-sphere. Like the surface of an
expanding balloon, there is no edge and every point has the appearance of a
center that all the other points on the surface recede from. So the best way
to describe a 3-sphere is a three-dimensional boundary of a four-dimensional
ball. There is no edge and every point looks like the center of the Universe.
The open case leads to a 3-hyperboloid.



The no-boundary proposal via the five-dimensional FLRW model 825

In this note we considered the Euclidean form of the FLRW model with
c = 1:

ds2 = (idt)2 + a2(t)[dψ2 + sin2ψ(dθ2 + sin2θ dφ2)]

or
ds2 = (idt)2 + a2(t)[dψ2 + sinh2ψ(dθ2 + sin2θ dφ2)].

Since the absence of a spatial edge is consistent with observation, the extra
spatial dimension suggests an extension of the FLRW model that results in
the line elements (11) and (12). These ideas lead to the following possible
interpretations:

4.1 Interpretation 1

The respective spatial parts in (11) and (12) represent a four-dimensional
boundary of a five-dimensional sphere or hyperboloid. Being a boundary,
there is, once again, no edge. The difference is that the boundary includes
the t in the original Lorentzian spacetime, which implies that the Universe
cannot have an edge, either spatial or temporal. The absence of a temporal
edge is consistent with Hawking’s no-boundary proposal.

The required form of the metric forced the introduction of a new component
in the five-dimensional model, Eqs. (11) and (12). The original time t is, as in
Hawking’s theory, an illusion, making the five-dimensional time η the “real”
time; moreover, the new time is orthogonal to the original time.

4.2 Interpretation 2

Alternatively, one could view the five-dimensional space as a mathematical ab-
straction whose only purpose is to define the four-dimensional boundary, just
as a four-dimensional fictitious sphere is used to define the boundary of a 3-
sphere. With this interpretation, there is no physical second time component,
leaving only ordinary time, but there is still no temporal edge and hence no
beginning.

From the standpoint of the cosmological principle, Interpretation 1 is prob-
ably preferred. Recall that according to this principle, there is no such thing
as a special place: everything looks essentially the same in every direction
for every observer. Yet strictly speaking, everything should look the same at
any time, as well. Returning to t, thanks to the Big Bang, this aspect of the
cosmological principle is lost: the Universe would look different for any two
observers who are widely separated in time, i.e., at respective times t1 and t2,
where t1 � t2. No such effect exists for the new time η, however, so that η
reestablishes the “perfect cosmological principle.”



826 Peter K. F. Kuhfittig and Vance D. Gladney

References

[1] J.B. Hartle and S.W. Hawking, Wave function of the Universe, Physical Re-
view D, 28 (1983), 2960-2975. http://dx.doi.org/10.1103/physrevd.28.2960

[2] S.D. Tade and M.M. Sambhe, Higher dimensional FRW cosmology with
variable G and Λ, Internationl Journal of Theoretical Physics, 51 (2012),
447-454. http://dx.doi.org/10.1007/s10773-011-0921-9

[3] Robert M. Wald, General Relativity, Chicago University Press, 1984, Chap-
ter 5. http://dx.doi.org/10.7208/chicago/9780226870373.001.0001

Received: Novenber 3, 2015; Published: December 21, 2015


