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Abstract
The scalar field equation in Robertson-Walker space-time is put,

by elementary transformation, into the the form of covariant eigenvalue
probem of ordinary QM. The spectrum of the corresponding Schrödinger
operator is determined according to the value of the curvature parameter
a = 0,±1. There results that the energy E is positive non degenerate
in all cases. For a = 0, there results E > 0. Instead in the curved
cases, E cannot be arbitrarily small: one has E > 1/2 for a = −1
and E = Ej = (j + 2)2 − 1, j = 0, 1, 2, ... If of physical meaning the
results seem to be better interpreted in case of massless particle and
would discriminate the curvature in the standard cosmological model
formulation.
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1 Introduction

The scalar field equation in Robertson-Walker (RW) space-time has been
widely considered being a basic quantum wave equation in curved space-time.
Its integration is generally performed by variable separation (see e. g., [2, 9]).
Also the quantization of the scalar field equation in curved space-time has been
widely studied (see e.g., [2, 5]). As far as the author knows, the reduction of
the scalar field equation to a one dimensional Schrödinger like eigenvalue prob-
lem has not yet been considered. Such procedure was developed for the Dirac
equation in Kerr geometry [3] and, successively, also in RW geometry [4, 10].
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In case of the scalar field the study may be of interest because it represents
an alternative quantization to the canonical field quantization in curved space-
time. To that end, the scalar field equation being separable, one can confine
to work on the radial equation. By elementary changes of the variable and of
the wave function, the separated radial equation is here put into the form of
a Schrödinger like eigenvalue equation. It is such equation that is interpreted
in the ordinary quantum way. The solution is obtained for each value of the
curvature parameter a = 0,±1. For a = 0,−1 one has only scattering state
solutions. The corresponding energy spectrum is non degenerate and consists
of the values k2 > 0 if a = 0 and k2 > 1 if a = −1. For a = 1 the discrete
non degenerate spectrum and the corresponding proper states are determined.
The discrete energy levels are very similar to the asymptotic ones of the mass
less neutrino for zero angular momentum [4].

2 Assumptions and preliminary results

The equation for the scalar field φ(x) non minimally coupled to gravity in a
general curved space time reads

∇α∇αφ(x) + [m2
0 + ζR̄(x)]φ(x) = 0 (1)

where ∇α is the covariant derivative relative to the metric tensor gµν , R̄(x) =
gµνRµν is the Ricci scalar, ζ a numerical real factor and m0 the mass of the
field. In case of the Robertson-Walker (RW) metric whose gµν is given by

ds2 = gµνdx
µdxν = dt2−R2(t)

[ dr2

1− ar2
+ r2(dθ2 +sin2 θdϕ2

]
, a = 0,±1 (2)

the equation (1) can be separated by variable separation. Indeed (e.g. [9])
one is left with

φ = T (t)S(r)Ylm(θ, ϕ), l = 0, 1, 2.., m = −l,−l + 1, ..0, 1, ..l (3)

T̈R2 + 3RṘṪ + [k2 +m2
0R

2 + 6ζ(R̈R + Ṙ2 + a)]T = 0 (4)

(1− ar2)S ′′ +
(2

r
− 3ar

)
S ′ +

(
k2 − λ

r2

)
S = 0 (5)

Ylm the usual spherical harmonics, k, λ the separation constants for the time
and angular equations. There results λ = l(l + 1), l = 0, 1, 2, ... As to the
solution of (4), some developments can be given when R(t) describes the time
evolution of the standard cosmological model [9]. The equation (5) has been
solved exactly for a = 0,±1 (see references in [9]). On can then select a
complete set of solutions φα of (1) orthogonal in a suitable scalar product that
provides the basis for covariant quantization of the scalar field in analogy to
the Minkowski space time case (e. g., [9]).
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Instead here the equation (5) will be transformed into a Schrödinger like
eigenvalue problem by elementarily changing the independent variable and
radial wave function. Define then

s =
∫ dr√

1− ar2
(6)

If a = 0, r = s. By setting S(r) = F (r)/r, from (5) one has

−d
2F

dr2
+

4 + l(l + 1)

r2
F = k2F (7)

If a = −1, s = sinh−1 r. If S(s) = F (s)/ sinh s, (5) gives

−d
2F

ds2
+
(
1 +

l(l + 1)

sinh2 s

)
F = k2F (8)

If a = 1, s = sin−1 r. With S(s) = F (s)/ sin s, (5) implies

−d
2F

ds2
+
( l(l + 1)

sin2 s
− 1

)
F = k2F (9)

The equations (7), (8), (9) have the form of a Schrödinger like eigenvalue
problem. They are interpreted as the quantum scalar field equation in RW
space-time. The spectra of the values of k2 are accordingly determined by
requiring the eigenstates (or their eigenpackets) to belong to L2((0,∞), ds) for
a = 0,−1 or to L2((0, π/2), ds) for a = 1. On the base of qualitative results on
one dimensional Schrödinger operators (e. g., [6]), acceptable solutions must
vanish in s = 0 for a = 0,±1 and also in s = π/2 for a = 1. The expression
E = k2/2 will be interpreted as the energy of the system.

3 Solution for the flat space time case

The equation (7) can be reported to a confluent hypergeometric equation [1]
through the steps:

F = rαeikrZ(r), α = (1±
√

(2l + 1)2)/2 (10)

ξ = −2ikr (11)

ξZ ′′ + (2α− ξ)Z ′ − αZ = 0 (12)

There are two independent solutions of (7):

F1k = rαeikrφ(α; 2α;−2ikr) (13)

F2k = r1−αeikrφ(1− α; 2− 2α;−2ikr) (14)



142 Antonio Zecca

If α > 0 in (10) then F2k is not acceptable because it does not vanish in r = 0.
On the other hand [1]

F1k
r→∞−→ Γ(2α)

Γ(α)

{
e−ikr(−2ik)−α + eikr(2ik)α

}
(15)

If k is real F1k is not of class L2 in r =∞ but its eigenpackets ∆F1k do are. If
k = iχ nor F1k nor its eigenpackets are of L2-class. (If α < 0 the role of F1k and
F12k are reversed.) Therefore (7) has a continuum non degenerate spectrum
of eigenvalues k2 > 0. The corresponding solutions are improper (scattering)
states.

4 Solution for the open space time case

The equation (8) can now be reported to a hypergeometric equation through
the steps:

y = cosh s (16)

F = (1− y2)αu(y), α = (l + 1)/2 (17)

(y2 − 1)u′′ + (1 + 4αy)u′ + (2α + λ+ k2 − 1)u = 0 (18)

Finally with 1− y = 2x, (18) becomes

x(1− x)u′′ + [c− (a+ b+ 1)x]u′ − ab u = 0 (19)

a = l + 1±
√

1− k2, b = l + 1∓
√

1− k2, c = l + 3/2 (20)

Independent solutions of (8) are

F1k = (1− y2)
l+1
2 F (a, b; c; (1− y)/2) (21)

F2k = (1 + y)
l+1
2 (1− y)−

l
2F (1− c+ a, 1− c+ b; 2− c; (1− y)/2) (22)

Since F must vanish for s = 0, F2k is not acceptable. On the other hand

F1k
s→∞−→ Γ(c)Γ(b− a)

Γ(b)Γ(c− a)

(es
4

)∓√1−k2
+

Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(es
4

)±√1−k2
(23)

where only the upper or only the lower signs have to be considered toghether.
Therefore if k2 < 1 nor F1k nor its eigenpackets ∆F1k are of class L2. If instead
k2 > 1 then F1k is an oscillating function for s→∞. It is not of L2-class but
its eigenpackets do are. The spectrum of the eigenvalues of (8) is then the
continuous non degenerate spectrum of values k2 > 1.
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5 Solution for the closed space time case

By setting y = cos s in (9) one can proceed as for a = −1 thus obtaining the
equations (19)-(22) with the only difference of the definition of the y(s). In
the present case acceptable solutions must vanish for s = 0, π/2 (y = 1, 0).
Therefore, from (22), F2k is not acceptable. Instead F1k vanishes in y = 1
and in order to be acceptable it must be F1k(y = 0) = 0. Since from (20)
c = (a+ b+ 1)/2 one has to have [1]

F (a, b;
a+b+1

2
;
1

2
) = π

1
2

Γ(1
2

+ a
2

+ b
2
)

Γ(1
2

+ a
2
)Γ(1

2
+ b

2
)

= 0 (24)

that can be satisfied for (a+ 1)/2 = −n, n = 0, 1, 2... or k2 ≡ k2n = (2n+ l +
2)2 − 1. Such set of eigenvalues can be recast into the form

k2n = (j + 2)2 − 1, j = 0, , 1, 2, ... (25)

The corresponding proper eigenstates F1n(s) are then [1]

(sin s)l+1F
(
− n, 2l + 2 + n; l +

3

2
;
1− cos s

2

)
=
n!(sin s)l+1

(2l + 2)n
C l+1)
α (cos s) (26)

and results already orthogonal and complete in L2((0, π/2), ds) on account of
the orthogonality relations of the Gegenbauer polynomials [1]). Therefore the
spectrum is, as expected, proper, positive non degenerate.

6 Concluding Remarks

The scalar field equation in RW space-time has been elementary reduced to a
Schrödinger like eigenvalue problem. The main consequence is the nature of the
spectrum of the associated Schrödinger operator that results non degenerate
in every case of the curvature parameter. In the flat space time case the
eigenvalues k2 are such that k2 > 0. For a = −1 there results k2 > 1 while for
a = 1 one has k2 = k2nl = (2n + l + 2)2 − 1 (or, equivalently, (25)). Therefore
in the non flat space-time cases the energy cannot be arbitrarily small. The
expression of En for a = 1 is very similar to the l = 0 asymptotic expression
of the energy spectrum of the massless neutrino in RW space time [4].

In every case of the curvature parameter, the energy spectrum is indepen-
dent of the mass of the particle, whose role is confined in the time evolution
equation (4). Even if problematic, such aspect could be ascribed to an a priori
non impossible cosmological effect. In case of massless fields, the interpretation
of the above scheme seems to be more consistent. In particular, if of physical
meaning, it could represent a further property of Goldstone Bosons [8].

Finally, if there where an experimental evidence that massless spin zero
particle of cosmological origin cannot approximate the zero value of the energy,
this would support the idea that the standard cosmological model is flat.
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