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Abstract

A Lemâıtre-Tolman-Bondi (LTB) cosmological model with non triv-
ial pressure and particle creation assumption is considered. A priori the
presence of pressure extends the LTB model while particle creation as-
sumption seems to specialize it. The object is to integrate the scheme.
This is achieved in general if ρ(r, t) = −p(r, t) finding non factorized
solutions. If p = p(t) also ρ depends only on t , the physical radius
is of the form y(r, t) = T (t)F (r), the scheme is separable and one is
formally reduced to a Robertson-Walker metric with generalized radial
coordinate. The interest lies then on the time dependence of the model
in case p(t) = wρ(t). The resulting coupled time equations in ρ(t) and
T (t) are disentangled and the explicit solution is determined.
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1 Introduction

Particle production by universe expansion is a well known quantum effect
that is consequence of field quantization in curved space-time [5]. Recently
the number usk(t) of particles of spin s, momentum k created by universe
expansion per unit time at time t has been calculated in Robertson-Walker
(RW) space-time, the result being usk(t) = ± 6 Ṙ(t)/R(t), R(t) the cosmic
scale factor. The result holds for spin 0, 1/2, 1 fields (and it is expected to
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hold for higher spin) ( [13] and references therein). Similar discussion have been
developed in Lemâitre-Tolmann-Bondi (LTB) metric where the same result has
been obtained for s = 1 and where it is expected to hold for s = 0, 1/2 [9].
In spite of some limitations (e. g., the number of created particles per unit
time in RW is divergent and in the LTB model it has been proved only for the
lower spin values) the result has been taken into account in the formulation of
cosmological model. In Standard Cosmology as well as in LTB Cosmology the
contribution of particle creation has been achieved in essentially two ways. The
first one consists in performing the substitution ρ→ ρ+ α(t)Ṙ/R in RW and
ρ→ ρ+α(t)ẏ/y in LTB cosmology, y = y(r, t) then physical radius. The second
one consists in adding to the Einstein field equation a cosmological term of the
form αṘ/R in RW and αẏ/y in LTB cosmology. In RW cosmology the second
formulation seems to better fit the experimental values of the cosmological
parameters [13] even if a complete solution and discussion of both formulation
has not yet been obtained (see the comments [11, 12]).

In the conventional LTB cosmology the substitution ρ → ρ + αẏ/y leads
to calculations that become rapidly difficult and involved. A study of special
cases of such model has been discussed in [10]. Instead the formulation of
back reaction to particle creation by a cosmological term ∝ ẏ/y drastically
reduces the generality of the scheme to a Robertson-Walker like metric with
generalized radial function [10]. It remains of interest the surviving separated
time equations that was solved only in special cases [14]. In the mentioned
papers on the LTB model, numerical results have not been explicitly reached
to be compared with the experimental data. The model seems however of
interest. Recently the no homogeneity of the LTB model has been considered
an alternative to the introduction of dark energy and dark matter as done in
Standard Cosmology (e. g., [1, 6]). It seems therefore of interest to go further
in the study of the model.

The object of the present paper is of studying an extended LTB model that
maintains the formulation of back reaction to particle creation in the second
way just mentioned, but that avoids the implied specialization of the scheme.
This is done by simply assuming non zero pressure of dust matter of the form
p = p(r, t). There results a non trivial generalization, mainly for mathemat-
ical aspects, of the scheme studied in [14]. The model is again reduced to
a generalized Kepler-like equation with variable mass and velocity dependent
term with a very involved y dependence. The case p(r, t) = −ρ(r, t) is inte-
grated exactly. Due to analytical complexity this is the only case where we
find non factorized y- solutions. The study is then specialized to the assump-
tion p = p(t) that again, unfortunately, confines the scheme to the case of
absence of pressure. Indeed ρ depends only on the time, the physical radius
is factorized y = T (t)F (r) and the entire model can be integrated by variable
separation. The choice p(t) = wρ(t) is then considered. The solution is re-
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duced to the solution of a pair of non linear coupled differential equations in
ρ, T . The equations are disentangled and one is finally left with the study of
a nonlinear second order differential equation in T that is integrated.

2 Cosmological model

The object is to describe a spherically symmetric Universe filled with freely
falling dust-like matter of density ρ and pressure p where particle creation
is admitted. The mathematical framework is that of spherically symmetric
comoving coordinate systems of line element [8]

ds2 = gµνdx
µdxν = dt2 − eγ(r,t)dr2 − y2(r, t)[dθ2 + sin2 θ dϕ2] (1)

By symmetry one has a priori ρ = ρ(r, t), p = p(r, t). The dynamics of the
Universe is governed by the Einstein field equation (ẏ = ∂y/∂t)

Rµν −
1

2
R β
β gµν = k Tµν + kλ

ẏ

y
gµν , |k| = 8πG (2)

T µν = (ρ+ p)UµUν − p gµν , U0 = 1, U j = 0, j = r, θ, ϕ (3)

Rµν = k(ρ+ p)UµUν − k gµν [
ρ− p

2
+ λ

ẏ

y
] (4)

As discussed in the Introduction k(ẏ/y)gµν is interpreted as a back reaction
term proportional to the ”number” of particle created at time t. T µν is the
usual energy momentum tensor of a perfect fluid of density ρ and pressure p
in comoving coordinates [8]. The equation (4) is a readjustment of (2) after
taking the trace. Making explicit (4) in the metric (1) gives:

2γ̈ + γ̇2

4
+ 2

ÿ

y
=
k

2
(ρ+ 3p)− kλẏ

y
(5)

2yy′′ − y′γ′y
y2

− eγ( γ̇
2

4
+ γ̇

ẏ

y
+
γ̈

2
) = k eγ

(ρ− p
2

+ λ
ẏ

y

)
(6)

−1 +
e−γ

2
[2yy′′ + 2y′2 − yy′γ′]− yÿ − ẏ2 − yẏγ̇

2
= ky2

(ρ− p
2

+ λ
ẏ

y

)
(7)

exp γ(r, t) = y′2/(1 + 2E(r)) (8)

E(r) is an arbitrary integration function. The left terms of (5), (6), (7) are the
expression of Rαα, α = t, r, θ while (8) is the integral of Rrt = 0. Consistency
of (2), ∇µ(T µν + λgµν ẏ/y = 0, gives (y′ = ∂y/∂r)

∂t(ρy
2y′) = −λy2y′∂t(ẏ/y)− p∂t(y2y′), ν = t (9)

∂r(p− λẏ/y) = 0, ν = r (10)
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The integration of (10) leads to

y(r, t) = exp
{
f(t) + g(r) +

1

λ

∫ t

p(r, t)dt
}

(11)

where f(t), g(r) are arbitrary integration function.

3 Reduction of the equations

Using (8), equation (5) reduces to

(y2ÿ)′ = k y2y′
[
ρ+ 3p

2
− λẏ

y

]
(12)

By expressing γ(r, t) as a function of y′, E (by (8)) into (6), (7) and then
combining the resulting equations one finally has

ẏ2

2
+ k

m(r, t)

y
+
k

2
y2
(
λ
ẏ

y
− p

)
= E (13)

m(r, t) =
∫ r

dr y2y′
(
ρ+ 3p

2
− λẏ

y

)
(14)

(One can check that for p = 0 eqs. (13), (14) reduce to the situation of
[13]). The equation (13), that is a Kepler-like equation with variable mass and
velocity dependent term, is very involved since m depends on y through (14).
Besides (13) the physical radius satisfies also (9) that can be rearranged in the
form

ρ̇+ (ρ+ p)
∂t(y

2y′)

y2y′
= −λ ∂t

( ẏ
y

)
(15)

The equations can be solved once a state equation for ρ, p is given. At the
present level of generality, that is by letting p to be function of both r and
t, the solution seems a difficult task as far as the author is concerned. An
exception is the following.

4 The case ρ(r, t) = −p(r, t): exact solution

The scheme can be solved in the analog of the Vacuum Energy case of the
Standard Cosmology but still maintaining the r, t dependence. Suppose indeed
ρ(r, t) = −p(r, t). From (15), (10) one has then

ρ(r, t) = −λẏ(r, t)/y(r, t) + ρ0 (16)

ρ0 an arbitrary numerical constant. From (13), (14) one has

m(r, t) = −ρ0y3/3, 3 ẏ2 + kρ0 y
2 = 6E, (17)
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The last equation can be integrated. This is the only case we are able to
furnish non factorized solutions. By distinguishing according to the signs of
E, kρ0, one obtains

y(r, t) =

√
6E

kρ0
sin

(√
kρ0
3
t+ α(r)

)
, kρ0 > 0, E > 0 (18)

y(r, t) =

√√√√ 6|E|
|kρ0|

cosh
(√ |kρ0|

3
t+ β(r)

)
, kρ0 < 0, E < 0 (19)

y(r, t) =

√
6E

|kρ0|
sinh

(√ |kρ0|
3

t+ γ(r)
)
, kρ0 < 0, E > 0 (20)

α(r), β(r), γ(r) arbitrary integration functions. A time oscillating solution is
then possible that starts with a big-bang y(r, 0) = 0, if α = 0. The solutions
(19), (20) represent an indefinitely expanding Universe with non factorized
physical radius accelerated expansion that may start with a big-bang y(r, 0) =
0 if γ = 0 but that does not have an initial inflationary phase as in the RW
case [13]. Here p = p(r, t) and follows from (16) and assumptions.

5 The special case p = p(t): variable separation

Suppose now p = p(t). From (11) there follows that the physical radius has
a factorized variable dependence y = T (t)F (r). Using this relation in (5), (8)
there follows that ∂rρ = 0 that is ρ = ρ(t). Then equation (13) separates and
(15) does not in fact depend on t. One has

F 2(r) = E(r)/H (21)

3Ṫ 2 + kρT 2 + kλT Ṫ = 6H (22)

ρ̇+ 3(p+ ρ)(Ṫ /T ) = −λ∂t(Ṫ /T ) (23)

H the separation constant of (13). The r-dependence of y is therefore quite
arbitrary and, by (21) and (8), it plays the role of a generalized Robertson-
Walker coordinate. Instead the time dependence follows by solving the coupled
equations (22), (23), once a state equation between ρ and p has been given.

5.1 The subcase p(t) = wρ(t)

Suppose now p(t) = wρ(t), w ∈ R. From (22), (23) one has

ρ = (6H − 3Ṫ 2 − kλṪT )/(kT 2) (24)

2T T̈ + aT Ṫ + bṪ 2 = c (25)

a = kλ(1 + w), b = (1 + 3w), c = 2(1 + 3w)H (26)
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Given T (t) solution of (25), ρ(t) follows from (24). It seems of interest to solve
the time equation because it contains the effect of particle creation. By setting
η = Ṫ , equation (25) is converted into

ηη′x = f(x)η2 + g(x)η + h(x) (x ≡ T ) (27)

f(x) = −d/2x, g(x) = −a/2, h(x) = c/2x (28)

that falls into the class of Abel’s non linear equation of second kind. In turn
it can be canonically reported to the normal form [7]. Indeed by defin-
ing η = E(x)u, E(x) ≡

∫
f(x)dx = Ax−b/2, φ(x) = F0(x)/F1(x), F0(x) =

h(x)/E2(x), F1(x) = g(x)/E(x) and considering the variable z

z(x) =
∫
F1(x)dx = − a

A(b+ 2)
x(b+2)/2, (29)

the equation (27) assumes the normal form

uu′z − u = φ(x(z)) ≡ z(b−2)/(b+2) (30)

where the arbitrary integration constant A has been chosen to make 1 the
factor in front of the last right term in (30). Once the solution u = u(z) is
given one has then

η ≡ Ṫ = E(x)u(z(x)) = AT−b/2 u
(
− aT (b+2)/2

A(b+ 2)

)
(31)

Integrating by separation one finally obtains

−2

a

∫ dz

u(z)
= t+B (32)

B an integration constant. The solution of (25) can then be obtained in the
form F (z) ≡ F (z(T )) = t+B that in principle gives T = T (t).

The result follows once two preliminary steps are possible: the solution
of (30) is explicitly given and the calculation of the quadrature in (32) is
performed. In the following it is shown that it is possible to perform at least
the first step.

Recently the general solution of the Normal Abel’s type non linear ODE of
second kind has been given [4]. The solution depends on the value D of the
discriminant of a suitable cubic equation. Accordingly, when applied to the
present scheme, there results that if D 6= 0, the solutions take complex values
and therefore are not acceptable. Instead if D = 0 there are real solutions u
of (30) that result as follows:[

u(z)− u1(z)
]m1(z) [

u(z)− u2(z)
]m2(z)

= C (33)
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ui(z) =
z

2

[
(2− 3δi2)

(
− q(z)

2

) 1
3 +

1

3

]
i = 1, 2 (34)

q(z) = −20

27
+

4

3z
[φ(z)− 2G(z)] (35)

G(z) = −φ(z)− 324

z2
φ3(z)− 54

z
φ2(z) +

z

2
(z 6= 0) (36)

mi(z) = M(z)
zδi1 + 6(1 + δi1)φ(z)

z + 18φ(z)
i = 1, 2 (37)

1

M(z)
=

4

log |C|

∫ [z + 15φ(z)] log |4 + z
3φ(z)
|

3[z + 12φ(z)][z + 18φ(z)]
dz (38)

where C is a constant of integration, ui(z), i = 1, 2 particular solutions of (7),
δik the Kronecker delta and φ(z) the expression given in (30). Therefore, even
if quite cumbersome, the solution of (7) is mathematically completely defined.

Unfortunately, for what concerns the physical interpretation, the solution
is far from being clear and explicit. Indeed one should first establish the z-
region in order to obtain from (33) real u(z), to perform the quadrature (32)
and then to possibly obtain T = T (t). Such steps seem however very involved.
(The same holds, as far as the author is concerned, if you try to perform
the quadrature (32) with the particular solutions ui(z) given in (34)). These
considerations prevent to clearly establish whether the Universe has e. g., an
inflationary phase and/or a late accelerated expansion. Therefore it is not yet
possible to decide whether to accept or reject the cosmological model proposed
in [14].

6 Comments and open problems

In the previous Sections the LTB cosmological model with particle creation
previously studied [14] has been reconsidered with non trivial pressure. The
solution of the scheme is not easy if one let ρ and p to depend on both r
and t. Indeed for p(r, t) = −ρ(r, t) (the Vacuum Energy case of the Standard
Cosmology [3]) the general non factorized solution is determined but it remains
open the problem of solving in the scheme for other general state equations.

The other situations discussed are all under the general assumption that the
pressure depends only on the time t. This implies that also ρ = ρ(t), that the
physical radius has the form y(r, t) = T (t)F (r). The scheme results completely
separable. F (r) can be formally viewed as a generalized Robertson-Walker
coordinate while T (t) satisfies a suitable non linear equation. Since the time
equation contains the effect of the particle creation term it has been explicitly
solved in case p(t) = wρ(t). The solution has been completely determined on
mathematical ground but, as remarked, it seem difficult to put into evidence
time aspects of physical interest.
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The considerations of the present paper have been done at a qualitative
level without deriving numerical results to be compared with cosmological
data. The inclusion of particle creation effect of particle creation could be
however of interest in an LTB cosmological model where inhomogeneity of the
Universe is suggested as an alternative to the introduction of the notion of
dark energy and dark matter as it is assumed in the standard cosmological
model (e.g., [2, 1, 6]).
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