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Abstract

We study the symmetry for the generalized twisted g-tangent num-
bers T,y q.¢ and polynomials T}, , q¢(z). We obtain some interesting
identities of the power sums and the generalized twisted g-tangent poly-
nomials T}, y 4,¢(x) using the symmetric properties for the p-adic invari-
ant integral on Z,.
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1 Introduction

Throughout this paper we use the following notations. By Z, we denote the
ring of p-adic rational integers, Q denotes the field of rational numbers, Q,
denotes the field of p-adic rational numbers, C denotes the complex number
field, and C, denotes the completion of algebraic closure of QQ,. Let v, be the
normalized exponential valuation of C, with |p|, = p~® = p~1. When one
talks of g-extension, ¢ is considered in many ways such as an indeterminate,
a complex number ¢ € C, or p-adic number ¢ € C,. If ¢ € C one normally

assume that |¢| < 1. If ¢ € C,, we normally assume that |¢ — 1|, < pfp%l
so that ¢° = exp(zlogq) for |z|, < 1. Let UD(Z,) be the space of uniformly
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differentiable function on Z,. For g € UD(Z,) the fermionic p-adic invariant
g-integral on Z, is defined by Kim as follows:

L) = [ F@dusyla) = Jim g 3 fla)(=a)see 2

N—oo [pN]_,

Note that

iy T-y() = T1(9) = | a@dpos(a). (L.1)

q—1
If we take g,(x) = g(x +n) in (1.1), then we see that

n—1

I_i(gn) = (=1)"I_1(g) + 2 _(=1)""g(1). (1.2)

=0

Let a fixed positive integer d with (p,d) = 1, set

X = Xy =lim(Z/dp"2), X, = Z,,, X*= |J a+dpZ,
N

0<a<dp
(a,p)=1

a+dp"Z,={re X |z=a (moddp™)},

where a € 7 satisfies the condition 0 < a < dp’V. It is easy to see that
Lalo) = [ g@dnse) = | gla)duosfa) (1.3)
b's Zp

Let T, = Un>1Cpv = limy_,o0 Cpnv, where Cpn = {¢|¢P™ = 1} is the cyclic
group of order p". For ¢ € T),, we denote by ¢, : Z, — C, the locally constant
function z — ¢*. In [6], we introduced the generalized twisted g¢-tangent
numbers 7, ¢ and polynomials T, , , () attached to x. Let x be Dirichlet’s
character with conductor d € N with d = 1(mod 2). The generalized twisted

g-tangent numbers T,, , , - attached to x are defined by the generating function:

2 ZZ;(l) X(a)(_l)agaqa(e&zt e m
qudGth + 1 = HZ:O TTL:X)%CE’ Cf’ [6] (]‘4)

We consider the generalized twisted ¢-tangent polynomials T, , 4 ¢(z) attached
to x as follows:

QZz;(l) X(a)(_l)acaqaemzt ot o n
( (dgle2dt 4 1 € = ZOTn’X’q’C(x)H’ cf. [6]. (1.5)
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Theorem 1.1 (/6]) For positive integers n and ¢ € T,, we have

T xac(x) = /X XW) o (v)q" (2y + )" dp_1(y).

Corollary 1.2 (/6]) For positive integers n and ¢ € T,, we have

Thxac = /X X(W)c(y)q” (2y)" dp—1(y).

Theorem 1.3 (/6]) For positive integers n and ¢ € T, we have

n n .
T xg¢(x) = Z (l>Tl,x,q,Cx g

=0

2  Symmetry for the generalized twisted tan-
gent polynomials

In this section, we assume that ¢ € T},. We obtain some interesting identities of
the power sums and the generalized twisted g¢-tangent polynomials 7}, , , ¢(2)
using the symmetric properties for the p-adic invariant integral on 7Z,. If n is
odd from (1.2), we obtain

[y

n—

I-1(gn) +1-1(9) =2 ) (=1)"g(k) (see [2]). (2.1)

e
Il

It will be more convenient to write (2.1) as the equivalent integral form

J

Substituting g(z) = x(x)(¢q)%e** into the above, we have

n

o+ i@+ [ g@dpa) =23 (D). (22

P Zyp k=0

/X(x+n)<x+nq(x+n)€(2x+2n)tdlu_l(x)_|_/ X(ﬂf)cquehtd#_ﬂ%)
X X

|
—

n

=2) ()'x()¢ e

(2.3)

<.
Il
o

For k € Z,, let us define the power sums 7, 4.¢(n) as follows:

n

Trac(n) = )_(=1)'x(D¢d (2. (2.4)

=0



66 C. S. Ryoo

After some elementary calculations, we obtain

qun€2nt/ X($)Cx+nq(x+n)€(2x+2n)tdlu,1($)
X

" a9 (2.5)
23 asox(a)(=1)7¢ g e
(dgle2dt 4 1 :
From the above, we get
/ X(x)gx-l-ndq(w-l-nd)6(2$+2nd))tdu_1(x) +/ X(x)gxqacehctdlu_l(x)
X X (2.6)
_ 2 [ x(@)¢rgme* dpy (x) '
fX Cndandx€2ndtxd[1,_1(l') ’
By substituting Taylor series of €2* into (2.3), we obtain
C"dqndZ( ) (2nd)™" k/ X(2)¢7q" (22) dpui ()
X (2.7)

4 / N (@) (2 iy (2) = 2T g (nd — 1),
X

By using (2.6) and (2.7), we arrive at the following theorem:

Theorem 2.1 Let n be odd positive integer. Then we obtain

2fX X(x)qum€2ztdlu 1 x e tm
E (2Tm (nd — —.
fX (”qu“dmehdmdu " x m,X,q, C n )) ]

0 m:

Let w; and wy be odd positive integers. Then we set

S(w17 'Z,UQ) =
fX fX X(xl)x(mg)c(wlxl+w2r2)q(w1$1+w2$2)€(2w1:v1+2w222+w1wzm)tdﬂ_l(l,l)dlu_l(xz)

fX (wrwadz gurwadr g2wiwedvt ), (x)

(2.8)
By Theorem 2.1 and (2.8), after elementary calculations, we have

m
S(wl, w2 ( Z meqwl cw1 (’u)gil,‘ > (2 Z mx,qv2, Cw2 'ZU1d — ]_) m|> .

By using Cauchy product in the above, we have

oo m m
S(wy,wy) = Z (Z ( )Tquwl o (W )] Ton gz gva (wrd — Dw ) ml

m=0 \j =0 ‘7
(2.9)
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From the symmetry of S(w;,wsy) in wy and wsy, we also see that

tm
S(wy, wy) = ( ZT moxq ¢ (W1 )w ) (22 moqvr ¢vr (wad — 1wy m!> :

m=0

Thus we have

S(ws,wa) = > (Z ( j)T«; (WA T o (w2 = 1) ) il
m=0 \j=0 )
(2.10)
tm
By comparing coefficients — in the both sides of (2.9) and (2.10), we arrive
m!

at the following theorem:
Theorem 2.2 Let wy and wy be odd positive integers. Then we obtain

m
m _ .
Z < >w;n w3 Ty gvz ¢v2 (W) T g o (Wad — 1)

=0 \J

Z ( )wiu@ ]Tj,x7qw1 ¢ (W2m) Ty g w2 (wid — 1),
=0

where Tk%qc( ) and T y.q.c(k) denote the generalized twisted q-tangent poly-
nomuals and the alternating sums of powers, respectively.

By Theorem 2.2 and Theorem 1.3, we have the following corollary.

Corollary 2.3 Let wy and ws be odd positive integers. Then we have

J

m
Z Z ( ) ( ) m— kw21‘j_ka,x,qw2,Cw2 ﬁn—j,x,q“’l (w1 (w2d _ 1)
0 k=0
m i ‘
Z Z < ) < )w{wgl_kxﬂ—ka7x7qw17<w1 Tm_ijﬂwQ,C“Q (wld _ 1)

7=0 k=0

Q

Now we will derive another interesting identities for the generalized twisted
g-tangent polynomials using the symmetric property of S(wy,ws). By (2.8),
after elementary calculations, we have

S(wl, wg)
2jw2

w )(wlt)
! dp—1(21)

wid—1 <2x1+w2x+

= (—1)jx(j)é“’2jqw2j/ X(x1)¢ g e

j= X

= (&= i w 2jwy\ | t"
Z ( Z X G Tygon g (w2x+ wy >U)1> nl

n=

O
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By using the symmetry property in (2.11), we also have

2jw1

w ) (w2t)
2 dp—1(z1)

2xotwiz+
X(xz)Cw”qw”?e(

e8] wo—1 .
j w w 2]w1 n t"
) Z (Z(_l)jX(J)C g Ty qun oo (wlx + Wo ) w2> nl

J=0

I
—~
|
—_
~—

<
P
~—
Iy
S
oy
.
L)
g
<.

(2.12)

t

By comparing coefficients — in the both sides of (2.11) and (2.12), we have
n!

the following theorem.

Theorem 2.4 Let wy and wy be odd positive integers. Then we have

wid—1 2]’(1)
2 : 2
CwQJ wywnTnxqwl,Cwl w2$+
w1
7=0
wad—1

. S 259w

— (—1)JX<j)<wquw1ngTnXqw27cw2 <'UJ1(I7+ fu 1) .
2

=0

.

If we take x = 0 in Theorem 2.4, we also derive the interesting identity for the
generalized twisted g-tangent numbers as follows:

wid—1 25w
E , wa wwwnTnxq“’wa1 < j 2)
wq

J=0

wod—1 2w
(=17 X ()™M gy Ty oz oo < J 1)'

=0

Letting ¢ — 1, — 1 in Theorem 2.4, we can immediately have the generalized
multiplication theorem for the generalized tangent polynomials(see, [5]).
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