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Abstract

In this paper we construct a resonance of the discrete Schrödinger equa-
tion in presence of a potential. To achieve this, we use Whittaker-Kotelnikov
interpolation, Fourier transform and Neumann series.
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1 Introduction

It was constructed the asymptotic for natural frequencies of the Schrödinger
equation using the (WKB) method [4]. It was encountered a formula explic-
itly to the eigenvalue that appears below the essential spectrum of the discrete
equation Klein-Gordon [3]. It was found a resonance for the discrete shal-
low water equation in the case of an underwater trench [1] . It was proposed
a simple method for the construction of an asymptotic of a small negative
eigenvalue for the Schrödinger equation in the presence of a shallow potential
well [2] . It was encountered exact solutions describing trapped water waves
over an underwater ridge of small height in the shallow water and resonances
(antibound states) over an underwater trench [5].

In this paper, we will construct a resonance of the discrete Schrödinger
equation, we use the Whittaker-Kotelnikov interpolation, Fourier transform
and Neumann series to find a solution that characterizes resonance.

2 Preliminary Notes

We consider the discrete Schrödinger equation

− 1

h2

(
ϕj+1 − 2ϕj + ϕj−1

)
+ εVjϕj = Eϕj, (1)

where ϕ(jh) = ϕj with j ∈ Z, h > 0 and ε → 0+. Vj is a discrete potential
with

Vj = 0, for |j| ≥ R, for some R ∈ R+

Definition 2.1 A solution ϕj of equation (1) is called a discrete resonance,
if it satisfies

ϕj ∝ eβ|jh| |j| → ∞ (2)

with β > 0, and E = −β2.

3 Main Results

The main result is as follows

Theorem 1 Let
∑
Vj > 0, then for ε sufficiently small, the equation (1) has

a discrete resonance for E = −β2, where

β =
hε

2

∑
Vj +O(ε2) (3)



Antibound state for the discrete Schrödinger equation 73

Proof. We consider the equation (1) with E = −β2. Applying Whittaker-
Kotelnikov interpolation and the Fourier transform, we obtain

ϕ̃h(p) = 2πC1δ(p− p+) + 2πδ(p− p−).

where the zeros of 4
h2

sin2
(
hp
2

)
+ β2 = 0, are p± = 2πk

h
± 2i sinh−1(βh

2
)

h
.

Then ϕh(x) = C1e
ip+x + C2e

ip−x. Now, considering the equation (1), we
obtain

A(p) = − ε√
2π

∫ π
h

−π
h

W (p− p′)ϕ̃h(p
′
)dp

′
, (4)

where W (p) = h
2π

∑
j Vje

−ijhp. The above expression has the form(
4

h2
sin2(

hp

2
) + β2

)
ϕ̃h(p) = A(p). (5)

We are looking for the resonance in the following form

ϕh(x) =
1

2π

∫ π
h

−π
h

eipx
A(p)

4
h2

sin2(hp
2

) + β2
dp+ C1e

ip+x + C2e
ip−x. (6)

We will take the of integration contour in the complex plane

Γ+ =
[
−π
h
,−1

]
∪
{
p+ qi : p2 + q2 = 1, q > 0

}
∪
[
1,
π

h

]
,

Γ− =
[
−π
h
,−1

]
∪
{
p+ qi : p2 + q2 = 1, q < 0

}
∪
[
1,
π

h

]
.

Applying the Cauchy residue theorem to the equation (6), we obtain

ϕh(x) =
1

2π

∫
Γ+

eipx
A(p)

4
h2

sin2(hp
2

) + β2
dp+

C1 +
πA(p+)

β
√

1 + h2β2
4

 eip+x + C2e
ip−x

for x > 0. Considering the right hand side of the equation and C1 = − πA(p+)

β

√
1+h2β2

4

ϕh(x) =
e−x

2π

∫
Γ+−i

eipx
A(p+ i)

4
h2

sin2(h(p+i)
2

) + β2
dp+ C2e

ip−x.

Since the last integral is bounded, then ϕh(x) = C2e
ip−x + O(e−x) when x →

+∞. Similarly, ϕh(x) = C1e
ip+x+O(ex), when C2 = − πA(p−)

β

√
1+h2β2

4

and x→ −∞.

Therefore,

ϕh(x) =
1

2π

∫ π
h

−π
h

eipx
A(p)

4
h2

sin2(hp
2

) + β2
dp+ C1e

ip+x + C2e
ip−x. (7)
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The Fourier transform of (7) has de form

ϕ̃h(p) =
A(p)

4
h2

sin2(hp
2

) + β2
+ 2πC1δ(p− p+) + 2πδ(p− p−). (8)

Replacing (8) into (4), we obtain

A(p) = − ε

2π

∫ π
h

−π
h

W (p− p′)A(p
′
)

4
h2

sin2(hp
′

2
) + β2

dp
′ − εC1W (p− p+)− εC2W (p− p−). (9)

Applying the Cauchy residue theorem to the equation (9), we obtain

A(p) = − ε

2π

∫
Γ+

W (p− p′)A(p
′
)

4
h2

sin2(hp
′

2
) + β2

dp
′ − εC2W (p− p−). (10)

We define the operator Tβ : H → H as

[TβA(ζ)] (z) =
1

2π

∫
Γ+

W (z − ζ)A(ζ)
4
h2

sin2(hζ
2

) + β2
dζ, z ∈ Bπ

h
,

whereH is the space of bounded analytic functions inBπ
h

=
{
z ∈ C : |Im z| < π

h

}
with the norm ‖A‖ = supz∈Bπ

h

|A(z)| . Equation (10) can be rewritten

[1 + εTβA(ζ)] (z) = −εC2W (z − p−)

where 1 is the identity operator. As Tβ is analytic and bounded, then it is
contraction operator, then we can take its inverse,

A(z) = −εC2 [1 + εTβ]−1W (z − p−)

Using Neumann series at z = p−, with C2 = − πA(p−)

β

√
1+h2β2

4

, we obtain

β =
επ√

1 + h2β2

4

W (z − p−) |z=p− +O(ε2)
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