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Abstract

The p-adic g-integral(or ¢-Volkenborn integration) was defined by
Kim(see [9,10]). From p-adic g-integrals’ equations, we can derive var-
ious g-extension of Bernoulli numbers and polynomials(see [1-21]). In
[4], D.S.Kim and T.Kim have studied Daehee numbers and polynomials
and their applications. For the twisted Daehee numbers and polyno-
mials are investigate in [17]. In [11], Kim-Lee-Mansour-Seo introduced
the g-analogue of Daehee numbers and polynomials which are called
g-Daehee numbers and polynomials. In [16], Park investigated twisted
version of Daehee polynomials as numbers with g-parameter, which re-
lated with usual Bernoulli numbers and polynomials. Lim considered in
[13], the modified g-Daehee numbers and polynomials which are differ-
ent from the g-Daehee numbers and polynomials of Kim-Lee-Mansour-
Seo. For the twisted version of Daehee polynomials, In this paper, we
give some useful properties and identities of twisted modified ¢-Daehee
numbers and polynomials related with twisted ¢-Bernoulli numbers and
polynomials.
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1 Introduction

Let p be a fixed prime number. Throuhout this paper, Z,, Q, and C, will
repectively denote the ring of p-adic rational integers, the field of p-adic rational
numbers and the completion s of algebraic closure of Q,. The p-adic norm is
defined |p|, = %.

When one talks of g-extension, ¢ is variously considered as an indetermi-
nate, a complex ¢ € C, or p-adic number ¢ € C,. If ¢ € C, one normally

assumes that |¢g| < 1. If ¢ € C,, then we assume that |¢ — 1], < p_Tll so that
¢* = exp(xlog q) for each x € Z,. Throughout this paper, we use the notation:

Note that lim,,;[z], = x for each x € Z,.
Let UD(Z,) be the space of uniformly differentiable function on Z,. For
f € UD(Z,), the p-adic g-integral on Z, is defined by Kim as follows:

N_1

I,(f) = j f(x)dpy(z) = lim ! Z f(z)g" (see [9,10]). (1)

Novoe [pV], &=

As is well known, the Stirling number of the first kind is defined by
Ty =a(— 1) (x—n+1) =Y Si(n,Da!, 2)
1=0

and the Stirling number of the first kind is given by the generating function to
be

(e =1 =ml S 52<z,m)% (see [8]). (3)

Unsigned Stirling numbers of the first kind are given by

n

e =a(r+1)-(x+n—1)=Y |Si(nD)a'. (4)

=0

Note that if we place x to —z in (2), then

(=) = (=1)"% = Si(n, [)(=1)'!
=0 . (5)
= (=1)" ) |Si(n,1)|a".

=0
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Hence, Sl(”v l) = |Sl(n7l)|(_1)nil
Using integration (1), the ¢-Daehee polynomials D,, ,(x) are defined and
studied by Kim et al.(see [11]), the generating function to be

o0 tn
= Z D7) . (6)

And the modified ¢-Daehee polynomials are defined and studied by the
author. The generating function to be

q—llog(1+t "
D, ( — 13]).
s Z (alg) % (sce [13) )

From (1), we have the following integral identity.

LR = 1) = o F0) + (g = DS 0), 0

where fi(z) = f(z + 1) and f'(z) = £ f(x).
In special case, we apply f(x) = €' on (8), we have the modified ¢g-Bernoulli
number B, (q) as follows:

Tl

/Zq—fe”duqu L L _SBL seelts).  (9)

t_
logq et —1 —~

Indeed if ¢ — 1, we have lirq B,.(q) = B,,. The nth modified ¢-Bernoulli
q—
polynomials and the generating function to be

[e.e] n

1 Z
a:|q . (10)
logq et =

When z = 0, B,(0|q) = B,(q) are the nth ¢g-Bernoulli numbers(see [13]).
From (8) and (10), we have

B, (xlg) = / @+ ) dpg ().

and .
n
B, (x|lq) = By(q)x" .
o) =3 (}) 2@
We define the twisted modified ¢-Bernoulli numbers by the generating func-

tion as follows:
t" q—1 &t
B -1 - 11
> Buelo) = (1)
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where [t], < pfﬁ.
If we apply f(z) = ¢ %™ in (8), we have

/ “edy, (x) ZBng = (12)
ZP

The nth twisted modified g-Bernoulli polynomials B, ¢(z|q) are given by,

- g—1 &t t
Bn — X en de — 33‘
cola) = [ qredpe) = e

(13)

The generating function of Daehee polynomials are introduced by Kim as
follows:

ZDn(x)gzwl—l—t Z/ T+ y)ndpo(z) (see [11]). (14)

t

When z =0, D,,(0) = D,, are called the Dachee numbers.
For n € N, let T, be the p-adic locally constant space defined by

T, =] Cp = lim Cpn,

n—oo
n>1

where Cpn = {w|w?P” = 1} is the cyclic group of order p™.
We assume that ¢ is an indeterminate in C, with |1 —¢|, < p_Tll. Then
we define the g-analog of a falling fractorial sequence as follows:

(@)ng =2z —q)(x—2¢)---(x—(n—1)g) (n=1), (2)oa=1
Note that

lim (), 251 (n, )z

From the view point of a generahzatlon of the midified ¢-Daehee polyno-
mials, we consider the twisted modified g-Daehee polynomials defined to be

qg—1 log(1+ ¢&t)
qlogq (1 4 g¢t)s — 1

oo m .
S Duglela) ;= (1 -+ &)’
n=0 ’

where t,q € C, with [t], < \q]pp_rv%l and £ € T,

The p-adic g-integral(or g-Volkenborn integration) was defined by Kim(see [9,10]).
From p-adic g-integrals’ equations, we can derive various g-extension of Bernoulli
numbers and polynomials(see [1-21]). In [4], D.S.Kim and T.Kim have stud-
ied Daehee numbers and polynomials and their applications. For the twisted
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Daehee numbers and polynomials are investigate in [17]. In [11], Kim-Lee-
Mansour-Seo introduced the g-analogue of Daehee numbers and polynomials
which are called g-Daehee numbers and polynomials. In [16], Park investigated
twisted version of Daehee polynomials as numbers with ¢-parameter, which re-
lated with usual Bernoulli numbers and polynomials. Lim considered in [13],
the modified ¢-Daehee numbers and polynomials which are different from the
g-Daehee numbers and polynomials of Kim-Lee-Mansour-Seo. For the twisted
version of Daehee polynomials, In this paper, we give some useful properties
and identities of twisted modified g-Daehee numbers and polynomials related
with twisted g-Bernoulli numbers and polynomials.

2 Witt-type formula for the nth twisted mod-
ified ¢-Daehee polynomials

Let us now consider the p-adic ¢-integral representation as follows:

s{éqy@+ynwww><nez+:Nu{m,sen» (15)

P

From (15), we have

= _ t" = _fx+y t"
n Y v n_n Yy v
;(& /qu (x+y)n,qduq(y)) = ;5 q /qu ( . )nduq(y)n!
zty
:/z q (1 +q€t) « dug(y),
p (16)
where t € C, with [t], < |g|,p” 7.
1 aty
For [t], < [ql,p~ T, we apply f(y) = ¢7¥(1 +¢&t) = in (1).
By (8), we have
_ oty = q—1 log (14 ¢&t
[ v+ gty = 1+ qepi L 108U
Zp 71084 (14 gét)s — 1 (17)

By (16) and (17), we obtain the following theorem, which may be called
Witt-type formula for the twisted modified g-Daehee polynomials.

Theorem 2.1 Forn >0, we have

Dpe(zlg) =&" | ¢7%(x+ y)nqgdig(y)-
Zp
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In (17), by replacing ¢ by £ (efqt — 1), we have

(efqt —1)" _q—1 St "
ZDM x|q n! ~ loggq eft —1° ZBM 7la) nl’ (18)

and

Z n£ I’q &qt 1)n _ Z Dn’g(l’lq> Z gmqms2(m’n)%

n=0 f"qn m=n
S (19)
$m
m=0 n=0 ann m'

By (18) and (19), we obtain the following corollary.

Corollary 2.2 Forn >0, we have

Be(zlg) = ZDma |q)€" """ Sa(n, m).

m=0

By Theorem 2.1,

Doe(zg) =€ | a7z + y)nedig(y)
ZP

"1
="y =S (n,l V(x4 y)'dpg(y).
{'q ;0 " 1(n, )/qu (z +y) dpug(y)

By (20), we obtain the following corollary.

Corollary 2.3 Forn > 0, we have

n

Dye(zlg) = &"7'q" " Si(n,1)Bre(zlg) = > _ &S (n,1)|(—q)" " Bre(xq).

=0 =0

From now on, we consider twisted modified g-Daehee polynomials of order
k € N. Twisted modified ¢g-Daehee polynomials of order k € N are defined by
the multivariant p-adic g-integral on Z,:

D k a:]q / / @) () e g A @) gty (1) - dpg (),
Zp ZP

(21)

where n is a nonnegative integer and £ € N. In the special case, z = 0,

Dflkg(q) = Dﬁfg(mq) are called the twisted modified g-Daehee numbers of order
k.



On the twisted modified q-Daehee numbers and polynomials 205

From (21), we can derive the generating function of D (:c|q) as follows:

o0 n

t
k
> Dyl
n=0
00 Tyt T +T
_Zé‘nqn/z /Z q—(rl+~~-+rk)( i )duq(xl)---duq(xk)t"
n=0 P P

:/ / q (@144 k)(1+q€t) a4 dptg(w1) - - - dpig ()
Zp Zp

(14 qg&t) / / —(@ibten) (1 4 q§t)
z, Z,

~ (1+ qgr)? (A B UL )
qlogq (1 4 q¢t)s —1

] dﬂq@l) - dptg (@)

(22)
Note that, by (22),

- S (n,m)
— Z,, Zp

X dpig(z1) - - dﬂq (@)
(23)
Since

/ L / gnq—(azl—&—...—&-xk)e(x1+-~.+xk+x)td#q(xl) . d/iq(mk)
Zp Zp

k
_ q— 1 gt e;tt
logq est — 1

o tn

k
= Bllela) .

we can derive easily

B kg)(55|q / / g @t o) (g oy ) dpg () - - - dpg ().

(24)
Thus, by (23) and (24), we have
D¥)(alg) = ¢ an e
= Z ¢"mE"™S) (n, m)BW (z]q) (25)

m=0

:Zﬁ"‘m|81(n,m)|( q)""" B (x]q).
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In (22), by replacing t by ¢ (efqt — 1), we get

> &gt _ 1\n _ k oo n
K (e 1) fa—1 &t % t

> Dl G = e () = Bl . (20)

n=0 :

&ngn! logq e$t — 1

and

k 0o k:
D£,§<x|q> 1 D) x|q m

By (25),(26) and (27), we obtain the following theorem.
Theorem 2.4 Forn >0 and k € N, we have

(27)

DM (xlq) = Zq“ men=mS, (n,m) BX) (x]q)

= 3 €S m)l(—a) " B (ala).

Now, we consider the twisted modified ¢-Daehee polynomials of the second
kind as follows:

Die(q) = € |yt Daadualy) (2 0). (28)

In the special case z = 0, ﬁn,g(q) = ﬁn75(0|q) are the called the twisted
modified g-Daehee numbers of the second kind.
By (28), we have

Duelalg) = £7" / (L) o) (29)

P

and so we can derive the generating function of ﬁng(:dq) by (8) as follows:
=~ —-y+zx t"
> Delela)’ 25 )
n=0 :

= Zé"q"/ q‘y< ‘ )duq(y)t"

n=0 ZP n
= [ o) ™ )
ZP

1—q log(1+ q&t)
qlogq (14 gct) " — 1

(30)

= (1 + q&t)s



On the twisted modified q-Daehee numbers and polynomials 207

From (29), we get

Dy e(g) :fnq”/Z g (_yq+$)ndﬂq(y)
/ q yZS (—y + ) dpg(y)
= ZSl n, 1)( / a7y — )'dpg(y)a" 7" (31)

= Z S1(n, [)(=1)' Bg(—xq)g"'¢"!

—1)" Y " |S1(n, 1) Bie(—xq)g" ¢

1=0
It is easy to show B, ¢(—z|q) = (—1)"By¢(x + 1]g). Thus from (31), we
have .
Do e(xlg) = (=1)" > |S1(n, 1)| Big(—alq)g" ¢
. (32)
= [81(n, )| Bre(z + 1lg)(—gq)" "¢

1=0
From (31) and (32), we have

Bue(z+1lg) =Y ¢" " Dy e(alq)|Si(n,m). (33)

m=0
Thus, from (31), we have the following theorem.

Theorem 2.5 Forn > 0, we have

ﬁn,g($|CI) = (=1)" Z S1(n, )| Bie(—z|q)g"'¢" .

=0

By replacing ¢ by ~¢(e*~") in (30), we have

PN 1 (eft—1)" g—1 =&t
D, B, e (34
nZ:O ,é(i’?\Q)gnqn T Togg e Z ¢ x!q (34)
and

wﬁnﬁqu n OolA)n x|q " m "
S P e - = S P S s
(35)
tm
— ml’

Z Zﬁnﬁ 5E|Q)Sg(m n) mongm= n)

m=0 n
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By (34) and (35), we obtain the following theorem.

Theorem 2.6 Forn > 0, we have

By ¢(—alq) = > ¢" """ Dyne(w]g) Sa(n, m).

m=0

Now we consider higher-order twisted modified ¢g-Daehee polynomials of
the second kind. Higher-order twisted modified ¢-Daehee polynomials of the
second kind are defined by the multivariant p-adic g-integral on Z,:

Dy i(xlg) = € / / SO (g — =g @) g dptg (1) - dptg (),
ZP Zp

(36)

where n € Z; and k € N. In the special case, x = 0, D(k)( ) = ng(()]q) are

called the higher-order twisted modified ¢-Dachee numbers of the second kind.
From (36), we can derive the generating function of D (x|q) as follows:

n

S Do)

n=0
00 —r1— - —T+T
= Zgnqn/z . /Z q—(z1+"'+$k) ( 7‘2 >dﬂq($1) T dﬂq(lﬂk)tn
n=0 P P
:/Z /Z (L fget) T dpg(nh) - - g (k)
(14 a0 (- 8 ( 5)
qlogq (1 4+ gct) 7 — 1
(37)
By (37)
A(k) Sl n m x1+ +.’L’k m
B (alg) - o k)
Z,, Z,

X duq(xl) duq )
S (n,m
:fnn LI\ 1Y) / / —(z14+-+xk) 1++1'k+l')m
Zp Zp

X d,uq(xl) " 'dﬂq(xk)
__¢non - Sl<n7m) (k)
=&"q" Yy =B (~xlq)

qm

m=0

—f"q”Zq” 181 (n, m)|BY (=)
(38)
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It is easy to show BY' ( x|q) = (— 1)”B§Lk)(:£ + k|q). Hence, by (38),

Theorem 2.7 Forn >0 and k € N, we have

N k n _n n—m . n—m k
DM (alq) = g™ 3 € g (S (n, m)| BE,(~x]q)

m=0
n

=" (1) TSy (n, m) | BE (2 + Klg).-

m=0

In (37), by replacing ¢ by _¢(e*” — 1), we get

i &gt __ 1\n _ 0 n
(k) (e nr et(z+k) [ 4 t
n=0 n=
( 9)
and
= Dil(zlg) 1 = Dk) xlq tm
n,§ 5 t m_m
3 DD L oy 5 Dl zé P

(40)

m=0 =
By (39) and (40), we obtain the following theorem.

Theorem 2.8 Forn >0 and k € N, we have

B(k ( + klq) = Z ﬁﬁ%(m)ﬁ"—mq”_msg(n,m).

m=0
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