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Abstract

In this paper, we will consider one family of Sheffer sequences satisfying a gener-

alization of the classical power sum identity. Also, we will study another family of

Sheffer sequences satisfying a generalization of the classical alternating power sum

identity.
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1. Introduction

Let

F =

{
f (t) =

∞∑
k=0

ak
tk

k!

∣∣∣∣∣ ak ∈ C

}
. (1.1)

For P = C [x], let us assume that P∗ is the vector space of all linear function-
als on P. 〈L| p (x)〉 denotes the action of the linear funcdtional L on p (x) which
satisfies 〈L+M | p (x)〉 = 〈L| p (x)〉+〈M | p (x)〉, and 〈cL| p (x)〉 = c 〈L| p (x)〉,
where c is a complex constant. The linear funcdtional 〈f (t)| ·〉 on P is defined
by 〈f (t)|xn〉 = an, (n ≥ 0), for f (t) ∈ F .

Thus, we have〈
tk
∣∣xn〉 = n!δn,k, (n, k ≥ 0) , (see [14, 17]) , (1.2)

where δn,k is the Kronecker’s symbol.
The order o (f (t)) of a power series f (t) (6= 0) is the smallest integer k for

which the coefficient of tk does not vanish. If o (f (t)) = 0, then f (t) is called
an invertible series; if o (f (t)) = 1, then f (t) is called a delta series (see
[10, 17]).

Let us assume that fL (t) =
∑∞

k=0

〈
L|xk

〉
tk

k!
. From (1.2), we note that

〈fL (t)|xn〉 = 〈L|xn〉. So, the map L 7→ fL (t) is a vector space isomor-
phism from P∗ onto F . Henceforth, F denotes both the algebra of formal
power series in t and the vector space of all linear functionals on P, and so
an element f (t) of F will be thought of as both a formal power series and
a linear functional. We call F the umbral algebra and the umbral calculus
is the study of umbral algebra. Let f (t), g (t) ∈ F , with o (f (t)) = 1 and
o (g (t)) = 0. Then there exists a unique sequence sn (x) (deg sn (x) = n) such

that
〈
g (t) f (t)k

∣∣∣ sn (x)
〉

= n!δn,k, (n, k ≥ 0). Such a sequence sn (x) is called

the Sheffer sequence for (g (t) , f (t)) which is denoted by sn (x) ∼ (g (t) , f (t)) .
The sequence sn (x) is Sheffer for (g (t) , f (t)) if and only if

1

g
(
f (t)

)exf(t) =
∞∑
n=0

sn (x)
tn

n!
, (x ∈ C) , (see [15, 17]) , (1.3)

where f (t) is the compositional inverse of f (t) with f (f (t)) = f
(
f (t)

)
= t.

Let f (t) ∈ F and p (x) ∈ P. Then, by (1.2), we get

f (t) =
∞∑
k=0

〈
f (t)|xk

〉 tk
k!
, p (x) =

∞∑
k=0

〈
tk
∣∣ p (x)

〉 xk
k!
. (1.4)

From (1.4), we can derive the following equations:

tkp (x) = p(k) (x) =
dk

dxk
p (x) , eytp (x) = p (x+ y) ,

〈
eyt
∣∣ p (x)

〉
= p (y) .

(1.5)
In this paper, we will consider one family of Sheffer sequences satisfying a

generalization of the classical power sum identity. Also, we will study another
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family of Sheffer sequences satisfying a generalization of the classical alternat-
ing power sum identity. One family consists of those Sheffer sequences sn (x)

for the pair

(
g (t) =

(ea1t−1)···(eart−1)
f(t)r

, f (t)

)
, where f (t) is any delta series,

r ∈ Z>0, and a1, a2, . . . , ar 6= 0. Note that g (t) is an invertible series. That is,

sn (x) ∼
(

(ea1t − 1) · · · (eart − 1)

f (t)r
, f (t)

)
. (1.6)

We will show later that this family contains many interesting Sheffer se-
quences. Another family is composed of those Sheffer sequences sn (x) for the
pair (

g (t) =
r∏
i=1

(
eait + 1

2

)
, f (t)

)
,

where a1, a2, . . . , ar 6= 0, and f (t) is any delta series. Again, we will see that
this family also has many interesting members.

In the previous paper ([10]) “A generalization of power and alternating power
sums to any Appell polynomials”, we introduced Barnes’ multiple Bernoulli
and Appell mixed-type polynomials and Barnes’ multiple Euler and Appell
mixed-type polynomials. Then we established one main identity for each of
them connecting a sum for the Appell polynomial and that for the mixed-type
polynomial. We note that the present result has overlaps with those ones only
when f (t) = t.

2. Families of Sheffer sequences satisfying generalizations of
power and alternating power sum identities

Let a 6= 0. From (1.5), we note that

e(m+1)at − 1

eat − 1
p (x) =

m∑
i=0

p (x+ ai) ,

〈
e(m+1)at − 1

eat − 1

∣∣∣∣ p (x)

〉
=

m∑
i=0

p (ai) ,

(2.1)
and

(−1)m e(m+1)at + 1

eat + 1
p (x) =

m∑
i=0

(−1)i p (x+ ai) ,〈
(−1)m e(m+1)at + 1

eat + 1

∣∣∣∣ p (x)

〉
=

m∑
i=0

(−1)i p (ai) ,

(2.2)

where p (x) is any polynomial.

Lemma 1. Let m1,m2, . . . ,mr ∈ Z with mi ≥ 0 (i = 1, 2, . . . , r), a1, . . . , ar ∈
C \ {0}. Then, for any polynomial p (x), we have(

e(mr+1)art − 1
)
· · ·
(
e(m1+1)a1t − 1

)
p (x) (2.3)
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=
r∑
i=0

(−1)r−i
∑
J⊂[1,r]
|J |=i

p

(
x+

∑
j∈J

(mj + 1) aj

)
.

Proof. We prove Lemma 1 by induction on r. It is easy to check that it holds
for r = 1.

Assume that, for r > 1, the following holds:(
e(mr−1+1)ar−1t − 1

)
· · ·
(
e(m1+1)a1t − 1

)
p (x) (2.4)

=
r−1∑
i=0

(−1)r+i
∑

J⊂[1,r−1]
|J |=i

p

(
x+

∑
j∈J

(mj + 1) aj

)
.

Thus, by (2.4), we see that the LHS of (2.3) is

r−1∑
i=0

(−1)r−1−i
∑

J⊂[1,r−1]
|J |=i

(
e(mr+1)art − 1

)
p

(
x+

∑
j∈J

(mj + 1) aj

)

=
r−1∑
i=0

(−1)r−1−i
∑

J⊂[1,r−1]
|J |=i

(
p

(
x+

∑
j∈J

(mj + 1) aj + (mr + 1) ar

)

−p

(
x+

∑
j∈J

(mj + 1) aj

))

=
r−1∑
i=0

(−1)r−1−i
∑

J⊂[1,r−1]
|J |=i

p

(
x+

∑
j∈J

(mj + 1) aj + (mr + 1) ar

)

+
r−1∑
i=0

(−1)r−i
∑

J⊂[1,r−1]
|J |=i

p

(
x+

∑
j∈J

(mj + 1) aj

)

=p

x+
∑
j∈[1,r]

(mj + 1) aj


+

r−1∑
i=1

(−1)r−i
∑

J⊂[1,r−1]
|J |=i−1

p

(
x+

∑
j∈J

(mj + 1) aj + (mr + 1) ar

)

+
r−1∑
i=1

(−1)r−i
∑

J⊂[1,r−1]
|J |=i

p

(
x+

∑
j∈J

(mj + 1) aj

)
+ (−1)r p (x)
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=p

x+
∑
j∈[1,r]

(mj + 1) aj


+

r−1∑
i=1

(−1)r−i
∑
J⊂[1,r]
|J |=i

p

(
x+

∑
j∈J

(mj + 1) aj

)
+ (−1)r p (x)

=
r∑
i=0

(−1)r−i
∑
J⊂[1,r]
|J |=i

p

(
x+

∑
j∈J

(mj + 1) aj

)
.

�

Theorem 1. Let sn (x) ∼
(

(ea1t−1)···(eart−1)
f(t)r

, f (t)

)
, wn (x) ∼ (1, f (t)) , where

a1, a2, . . . , ar ∈ C \ {0}, r ∈ Z with r > 0 and o (f (t)) = 1. Then, we have

m1∑
i1=0

· · ·
mr∑
ir=0

wn (x+ a1i1 + · · ·+ arir) (2.5)

=
1

(n+ r)r

r∑
i=0

(−1)r−i
∑
J⊂[1,r]
|J |=i

sn+r

(
x+

∑
j∈J

(mj + 1) aj

)
,

where (x)n = x (x− 1) · · · (x− n+ 1) =
∑n

l=0 S1 (n, l)xl and S1 (n, l) is the
Stirling number of the first kind.

Proof. The result is obtained by computing the following in two different ways:(
e(mr+1)art − 1

eart − 1

)
× · · · ×

(
e(m1+1)a1t − 1

ea1t − 1

)
wn (x) . (2.6)

On one hand, it is(
e(mr+1)art − 1

eart − 1

)
× · · · ×

(
e(m1+1)a1t − 1

ea1t − 1

)
wn (x) (2.7)

=
e(mr+1)art − 1

eart − 1
· · · e

(m2+1)a2t − 1

ea2t − 1

(
m1∑
i1=0

wn (x+ a1i1)

)

=

m1∑
i1=0

e(mr+1)art − 1

eart − 1
· · · e

(m3+1)a3t − 1

ea3t − 1

(
m2∑
i2=0

wn (x+ a1i1 + a2i2)

)

=

m1∑
i1=0

m2∑
i2=0

e(mr+1)art − 1

eart − 1
· · · e

(m3+1)a3t − 1

ea3t − 1
wn (x+ a1i1 + a2i2) .

Continuing in this fashion, we obtain the expression on the LHS of (2.5).
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On the other hand, we first observe that

(ea1t − 1) · · · (eart − 1)

f (t)r
sn = wn (x) , f (t)wn (x) = nwn−1 (x) . (2.8)

Thus, by (2.8), we get(
ea1t − 1

)
· · ·
(
eart − 1

)
sn (x) = f (t)r wn (x) = (n)r wn−r (x) . (2.9)

Replacing n by n+ r, we have(
ea1t − 1

)
· · ·
(
eart − 1

)
sn+r (x) = (n+ r)r wn (x) . (2.10)

From (2.6) and (2.10), we can derive the following equation:

e(mr+1)art − 1

eart − 1
· · · e

(m1+1)a1t − 1

ea1t − 1
wn (x) (2.11)

=
e(mr+1)art − 1

eart − 1
· · · e

(m1+1)a1t − 1

ea1t − 1

(
1

(n+ r)r

r∏
l=1

(
ealt − 1

)
sn+r (x)

)

=
1

(n+ r)r

(
e(mr+1)art − 1

)
· · ·
(
e(m1+1)a1t − 1

)
sn+r (x) .

Now, we get the expression on the RHS of (2.5) from Lemma 1. �

Corollary 1.

(a) Let sn (x) ∼
(

(ea1t−1)···(eart−1)
f(t)r

, f (t)

)
, wn (x) ∼ (1, f (t)) , where a1, a2, . . . , ar ∈

C \ {0}, r ∈ Z with r > 0 and o (f (t)) = 1. Then we have

m1∑
i1=0

· · ·
mr∑
ir=0

wn (a1i1 + · · ·+ arir) =
1

(n+ r)r

r∑
i=0

(−1)r−i
∑
J⊂[1,r]
|J |=i

sn+r

(∑
j∈J

(mj + 1) aj

)
.

(b) Let sn (x) ∼
((

et−1
f(t)

)r
, f (t)

)
, wn (x) ∼ (1, f (t)) , where o (f (t)) = 1 and

r > 0. Then
m1∑
i1=0

· · ·
mr∑
ir=0

wn (x+ i1 + · · ·+ ir) =
1

(n+ r)r

r∑
i=0

(−1)r−i
∑
J⊂[1,r]
|J |=i

sn+r

(
x+

∑
j∈J

(mj + 1)

)
.

(c) With sn (x) , wn (x) as in (b), we have

m1∑
i1=0

· · ·
mr∑
ir=0

wn (i1 + · · ·+ ir) =
1

(n+ r)r

r∑
i=0

(−1)r−i
∑
J⊂[1,r]
|J |=i

sn+r

(∑
j∈J

(mj + 1)

)
.

(d) With sn (x) , wn (x) as in (b), we have
m∑

i1,··· ,ir=0

wn (x+ i1 + · · ·+ ir) =
1

(n+ r)r

r∑
i=0

(−1)r−i
(
r

i

)
sn+r (x+ (m+ 1) i) .
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(e) With sn (x) , wn (x) as in (b), we have

m∑
i1,··· ,ir=0

wn (i1 + · · ·+ ir) =
1

(n+ r)r

r∑
i=0

(−1)r−i
(
r

i

)
sn+r ((m+ 1) i) .

Lemma 2. Let m1,m2, . . . ,mr ∈ Z with mi ≥ 0 (i = 1, 2, . . . , r), a1, . . . , ar ∈
C \ {0}. Then, for any polynomial p (x), we have(

(−1)mr e(mr+1)art + 1
)
· · ·
(
(−1)m1 e(m1+1)a1t + 1

)
p (x) (2.12)

=
r∑
i=0

∑
J⊂[1,r]
|J |=i

(−1)mJ p (x+ ((m+ 1) a)J) ,

where mJ =
∑

j∈J mj, ((m+ 1) a)J =
∑

j∈J (mj + 1) aj.

Proof. We show this by induction on r. It is easy to check that it holds for
r = 1. Assume that, for r > 1, the following holds:(

(−1)mr−1 e(mr−1+1)ar−1t + 1
)
· · ·
(
(−1)m1 e(m1+1)a1t + 1

)
p (x) (2.13)

=
r−1∑
i=0

∑
J⊂[1,r−1]
|J |=i

(−1)mJ p (x+ ((m+ 1) a)J) ,

From (2.12) and (2.13), we note that the LHS of (2.12) is(
(−1)mr e(mr+1)art + 1

)
· · ·
(
(−1)m1 e(m1+1)a1t + 1

)
p (x) (2.14)

=
r−1∑
i=0

(
(−1)mr e(mr+1)art + 1

) ∑
J⊂[1,r−1]
|J |=i

(−1)mJ p (x+ ((m+ 1) a)J)

=
r−1∑
i=0


∑

J⊂[1,r−1]
|J |=i

(−1)mJ+mr p (x+ ((m+ 1) a)J + (mr + 1) ar)

∑
J⊂[1,r−1]
|J |=i

(−1)mJ p (x+ ((m+ 1) a)J)


= (−1)m[1,r] p

(
x+ ((m+ 1) a)[1,r]

)
+

r−1∑
i=1

∑
J⊂[1,r−1]
|J |=i−1

(−1)mJ+mr p (x+ ((m+ 1) a)J + (mr + 1) ar)



162 Dae San Kim, Taekyun Kim and Jong Jin Seo

+
r−1∑
i=1

∑
J⊂[1,r−1]
|J |=i

(−1)mJ p (x+ ((m+ 1) a)J) + p (x)

= (−1)m[1,r] p
(
x+ ((m+ 1) a)[1,r]

)
+

r−1∑
i=1

∑
J⊂[1,r]
|J |=i

(−1)mJ p (x+ ((m+ 1) a)J) + p (x)

=
r∑
i=0

∑
J⊂[1,r]
|J |=i

(−1)mJ p (x+ ((m+ 1) a)J) .

�

Theorem 2. Let sn (x) ∼
(∏r

i=1

(
eait+1

2

)
, f (t)

)
, wn (x) ∼ (1, f (t)) , where

a1, a2, . . . , ar ∈ C \ {0}, r ∈ Z with r > 0 and o (f (t)) = 1. Then we have

m1∑
i1=0

· · ·
mr∑
ir=0

(−1)i1+···+ir wn (x+ a1i1 + · · ·+ arir) (2.15)

=
1

2r

r∑
i=0

∑
J⊂[1,r]
|J |=i

(−1)mJ sn

(
x+

∑
j∈J

(mj + 1) aj

)
,

where mJ =
∑

j∈J mj.

Proof. The result is obtained by computing the following in two different ways:

(−1)mr e(mr+1)art + 1

eart + 1
· · · (−1)m1 e(m1+1)a1t + 1

ea1t + 1
wn (x) . (2.16)

On one hand, it is

(−1)mr e(mr+1)art + 1

eart + 1
· · · (−1)m2 e(m2+1)a2t

ea2t + 1

m1∑
i1=0

(−1)i1 wn (x+ a1i1) (2.17)

=

m1∑
i1=0

(−1)i1
(−1)mr e(mr+1)art + 1

eart + 1
· · · (−1)m3 e(m3+1)a3t

ea3t + 1

(−1)m2 e(m2+1)a2t

ea2t + 1
wn (x+ a1i1)

=

m1∑
i1=0

(−1)i1
(−1)mr e(mr+1)art + 1

eart + 1
· · · (−1)m3 e(m3+1)a3t

ea3t + 1

(
m2∑
i2=0

(−1)i2 wn (x+ a1i1 + a2i2)

)
.

Continuing in this fashion, we get the expression on the LHS of (2.15).
On the other hand, (2.16) is

1

2r
(
(−1)mr e(mr+1)art + 1

)
· · ·
(
(−1)m1 e(m1+1)a1t + 1

) r∏
i=1

(
2

eait + 1

)
wn (x)

(2.18)
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=
1

2r
(
(−1)mr e(mr+1)art + 1

)
· · ·
(
(−1)m1 e(m1+1)a1t + 1

)
sn (x) .

Here we observe that

sn (x) =
r∏
i=1

(
2

eait + 1

)
wn (x) ,

which follows from
r∏
i=1

(
eait + 1

2

)
sn (x) = wn (x) ∼ (1, f (t)) .

Now, we obtain the expresssion on the RHS of (2.15) from Lemma 2. �

Corollary 2.

(a) Let sn (x) ∼
((

et+1
2

)r
, f (t)

)
, wn (x) ∼ (1, f (t)), where f (t) is a delta

series. Then we have
m1∑
i1=0

· · ·
mr∑
ir=0

(−1)i1+···+ir wn (x+ i1 + · · ·+ ir)

=
1

2r

r∑
i=0

∑
J⊂[1,r]
|J |=i

(−1)mJ sn

(
x+

∑
j∈J

(mj + 1)

)
.

(b) With sn (x) , wn (x) as in (a), we have

m1∑
i1=0

· · ·
mr∑
ir=0

(−1)i1+···+ir wn (i1 + · · ·+ ir) =
1

2r

r∑
i=0

∑
J⊂[1,r]
|J |=i

(−1)mJ sn

(∑
j∈J

(mj + 1)

)
.

(c) With sn (x) , wn (x) as in (a), we have
m∑

i1,...,ir=0

(−1)i1+···+ir wn (x+ i1 + · · ·+ ir) =
1

2r

r∑
i=0

(−1)mi
(
r

i

)
sn (x+ (m+ 1) i) .

(d) With sn (x) , wn (x) as in (a), we have
m∑

i1,··· ,ir=0

(−1)i1+···+ir wn (i1 + · · ·+ ir) =
1

2r

r∑
i=0

(−1)mi
(
r

i

)
sn ((m+ 1) i) .

3. Examples on Theorem 1

(A) Let sn (x) = Bn (x | a1, . . . , ar) ∼
(

(ea1t−1)···(eart−1)
tr

, t

)
, wn (x) ∼ (1, t).

Here Bn (x|a1, . . . , ar) are the Barnes’ multiple Bernoulli polynomials whose
generating function is given by

tr

(ea1t − 1) · · · (eart − 1)
ext =

∞∑
n=0

Bn (x | a1, . . . , ar)
tn

n!
.
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From Theorem 1, we have
m1∑
i1=0

· · ·
mr∑
ir=0

(x+ a1i1 + · · ·+ arir)
n

=
1

(n+ r)r

r∑
i=0

(−1)r−i
∑
J⊂[1,r]
|J |=i

Bn+r

(
x+

∑
j∈J

(mj + 1) aj

∣∣∣∣∣ a1, . . . , ar
)
..

Letting x = 0, we also get
m1∑
i1=0

· · ·
mr∑
ir=0

(a1i1 + · · ·+ arir)
n

=
1

(n+ r)r

r∑
i=0

(−1)r−i
∑
J⊂[1,r]
|J |=i

Bn+r

(∑
j∈J

(mj + 1) aj

∣∣∣∣∣ a1, . . . , ar
)
.

For r = 1, a1 = 1, m1 = m, we have
m∑
i=0

(x+ i)n =
1

n+ 1
(Bn+1 (x+m)−Bn+1 (x)) .

Thus, for x = 0, we get the classical power sum identity:
m∑
i=0

in =
1

n+ 1
(Bn+1 (m)−Bn+1) .

(B) Let sn (x) = β
(r)
n (λ, x) ∼

((
et−1

1
λ(eλt−1)

)r
, 1
λ

(
eλt − 1

))
, wn (x) = (x | λ)n =

x (x− λ) · · · (x− λ (n− 1)) ∼
(
1, 1

λ

(
eλt − 1

))
. Here, β

(r)
n (λ, x) are the degen-

erate Bernoulli polynomials of order r whose generating function is given by(
t

(1 + λt)
1
λ − 1

)r

(1 + λt)
x
λ =

∞∑
n=0

β(r)
n (λ, x)

tn

n!
.

They are called the degenerate Bernoulli polynomials of order r, since

lim
λ→0

β(r)
n (λ, x) = B(r)

n (x) , lim
λ→∞

λ−nβ(λ)
n (λ, λx) = b(r)n (x) .

Here B
(r)
n (x) are the Bernoulli polynomials of order r, with(

t

et − 1

)r
etx =

∞∑
n=0

B(r)
n (x)

tn

n!
, (see [1–20]) ,

and b
(r)
n (x) are the Bernoulli polynomials of the second kind of order r, with(

t

log (1 + t)

)r
(1 + t)x =

∞∑
n=0

b(r)n (x)
tn

n!
.
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From Corollary 1 (b), we have

m1∑
i1=0

· · ·
mr∑
ir=0

(x+ i1 + · · ·+ ir|λ)n

=
1

(n+ r)r

r∑
i=0

(−1)r−i
∑
J⊂[1,r]
|J |=i

β
(r)
n+r

(
λ, x+

∑
j∈J

(mj + 1)

)
.

For x = 0, we obtain

m1∑
i1=0

· · ·
mr∑
ir=0

(i1 + · · ·+ ir|λ)n

=m
1

(n+ r)r

r∑
i=0

(−1)r−i
∑
J⊂[1,r]
|J |=i

β
(r)
n+r

(
λ,
∑
j∈J

(mj + 1)

)
,

which reduces, in the simplest possible case, to

m∑
i=0

(i | λ)n =
1

n+ 1
(βn+1 (λ,m+ 1)− βn+1 (λ)) . (*)

Here, βn (λ, x) = β
(1)
n (λ, x) were introduced by Carlitz in [3, 4] and the

identity (*) was found also by Carlitz in [4]. Also, the higher-order degenerate

Bernoulli polynomials β
(r)
n (λ, x) were studied in [11] by using umbral calculus

and in [13] by exploiting p-adic integrals.

(C) Let sn (x) = βn (λ, x | a1, . . . , ar) ∼
(

(ea1t−1)···(eart−1)
( 1
λ(eλt−1))

r , 1
λ

(
eλt − 1

))
, and

wn (x) = (x | λ)n ∼
(
1, 1

λ

(
eλt − 1

))
. We recall that βn (λ, x | a1, . . . , ar) are

called Barnes-type degenerate Bernoulli polynomials and studied with umbral
calculus viewpoint in [14]. Here one shows easily that

lim
λ→0

βn (λ, x | a1, . . . , ar) =Bn (x | a1, . . . , ar) ,

lim
λ→∞

λ−nβn (λ, λx | a1, . . . , ar) =

(
r∏
i=1

ai

)−1
b(r)n (x) .

From Theorem 1, we note that

m1∑
i1=0

· · ·
mr∑
ir=0

(x+ a1i1 + · · ·+ arir | λ)n

=
1

(n+ r)r

r∑
i=0

(−1)r−i
∑
J⊂[1,r]
|J |=i

βn+r

(
λ, x+

∑
j∈J

(mj + 1) aj

∣∣∣∣∣ a1, . . . , ar
)
.
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(D) Let sn (x) ∼
((

e2t−1
et−1

)r
= (et + 1)

r
, et − 1

)
, wn (x) = (x)n ∼ (1, et − 1).

Note that the generating function for sn (x) is(
1

2 + t

)r
(1 + t)x =

∞∑
n=0

sn (x)
tn

n!
.

Thus, we have sn (x) = 2−rCh(r)
n (x) where Ch(r)

n (x) are the Changhee poly-
nomials of the first kind of order r given by the generating function(

2

2 + t

)r
(1 + t)x =

∞∑
n=0

Ch(r)
n (x)

tn

n!
, (cf. [15]) .

Now, from Theorem 1, we obtain

m1∑
i1=0

· · ·
mr∑
ir=0

(x+ 2 (i1 + · · ·+ ir))n

=
1

2r (n+ r)r

r∑
i=0

(−1)r−i
∑
J⊂[1,r]
|J |=i

Ch
(r)
n+r

(
x+ 2

∑
j∈J

(mj + 1)

)
.

(E) Let sn (x) = (x)n ∼
((

et−1
et−1

)r
= 1, et − 1

)
, wn (x) = (x)n ∼ (1, et − 1).

In this simple case, from Theorem 1, we have

m1∑
i1=0

· · ·
mr∑
ir=0

(x+ i1 + · · ·+ ir)n

=
1

(n+ r)r

r∑
i=0

(−1)r−i
∑
J⊂[1,r]
|J |=i

(
x+

∑
j∈J

(mj + 1)

)
n+r

.

4. Examples on Theorem 2

(A) Let sn (x) = En (x | a1, . . . , ar) ∼
(∏r

i=1

(
eait+1

2

)
, t
)

, wn (x) = xn ∼
(1, t). Here, En (x | a1, . . . , ar) are the Barnes-type Euler polynomials whose
generating function is given by

r∏
i=1

(
2

eait + 1

)
etx =

∞∑
n=0

En (x | a1, . . . , ar)
tn

n!
.

From Theorem 2, we obtain

m1∑
i1=0

· · ·
mr∑
ir=0

(−1)i1+···+ir (x+ a1i1 + · · ·+ arir)
n
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=
1

2r

r∑
i=0

∑
J⊂[1,r]
|J |=i

(−1)mJ En

(
x+

∑
j∈J

(mj + 1) aj | a1, . . . , ar

)
.

For r = 1, a1 = 1, m1 = m, we have
m∑
i=0

(−1)i (x+ i)n =
1

2
((−1)mEn (x+m+ 1) + En (x)) .

When x = 0, we obtain the classical alternating power sum identity
m∑
i=0

(−1)i in =
1

2
((−1)mEn (m+ 1) + En) . (**)

(B) Let sn (x) = E (r)n (λ, x) ∼
((

et+1
2

)r
, 1
λ

(
eλt − 1

))
, wn (x) = (x | λ)n ∼(

1, 1
λ

(
eλt − 1

))
. Here E (r)n (λ, x) are the degenerate Euler polynomials of order

r whose generating function is given by(
2

(1 + λt)
1
λ + 1

)r

(1 + λt)
x
λ =

∞∑
n=0

E (r)n (λ, x)
tn

n!
.

These polynomials were studied in [12]. We observe that

lim
λ→0
E (r)n (λ, x) = E(r)

n (x) , lim
λ→∞

λ−nE (r)n (λ, λx) = (x)n for any r ∈ Z>0.

Here E
(r)
n (x) are the Euler polynomials of order r given by(

2

et + 1

)r
etx =

∞∑
n=0

E(r)
n (x)

tn

n!
.

From Corollary 2 (a), we have
m1∑
i1=0

· · ·
mr∑
ir=0

(−1)i1+···+ir (x+ i1 + · · ·+ ir | λ)n

=
1

2r

r∑
i=0

∑
J⊂[1,r]
|J |=i

(−1)mJ E (r)n

(
λ, x+

∑
j∈J

(mj + 1)

)
.

In the simplest possible case, this reduces to
m∑
i=0

(−1)i (i | λ)n =
1

2
((−1)m En (λ,m+ 1) + En (λ)) ,

which becomes, by letting λ→ 0, the classical alternating power sum identity

(**). Higher order degenerate Euler polynomials E (r)n (λ, x) were introduced in
[19] and studied in [12] by using umbral calculus.

(C) Let sn (x) = En (λ, x | a1, . . . , ar) ∼
(∏r

i=1

(
eait+1

2

)
, 1
λ

(
eλt − 1

))
, wn (x) =
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(x | λ)n ∼
(
1, 1

λ

(
eλt − 1

))
. Here En (λ, x | a1, . . . , ar) are the Barnes-type de-

generate Euler polynomials given by

r∏
i=1

(
2

(1 + λt)
ai
λ + 1

)
(1 + λt)

x
λ =

∞∑
n=0

En (λ, x | a1, . . . , ar)
tn

n!
,

which were studied in [9]. Here we note that

lim
λ→0
En (λ, x | a1, . . . , ar) = En (x | a1, . . . , ar) ,

lim
λ→∞

λ−nEn (λ, λx | a1, . . . , ar) = (x)n .

From Theorem 2, we can derive the following equation:

m1∑
i1=0

· · ·
mr∑
ir=0

(−1)i1+···+ir (x+ a1i1 + · · ·+ arir | λ)n

=
1

2r

r∑
i=0

∑
|J |⊂[1,r]
|J |=i

(−1)mJ En

(
λ, x+

∑
j∈J

(mj + 1) aj

∣∣∣∣∣ a1, . . . , ar
)
.

(D) Let sn (x) = Ch(r)
n (x) ∼

((
et+1
2

)r
, et − 1

)
, wn (x) = (x)n ∼ (1, et − 1).

From Theorem 2, we note that

m1∑
i1=0

· · ·
mr∑
ir=0

(−1)i1+···+ir (x+ a1i1 + · · ·+ arir)n

=
1

2r

r∑
i=0

∑
J⊂[1,r]
|J |=i

(−1)mJ Ch(r)
n

(
x+

∑
j∈J

(mj + 1) aj

)
.

(E) Let sn (x) ∼
((

et+1
2

)r
, log (1 + t)

)
, wn (x) ∼ (1, log (1 + t)). Here sn (x)

are the polynomials whose generating function is(
2

eet−1 + 1

)r
ex(e

t−1)

=
∞∑
n=0

E
(r)
l (x)

1

l!

(
et − 1

)l
=
∞∑
n=0

(
n∑
l=0

S2 (n, l)E
(r)
l (x)

)
tn

n!
,

where S2 (n, l) is the Stirling number of the second kind.

Thus, sn (x) =
∑n

l=0 S2 (n, l)E
(r)
l (x).
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Also, wn (x) = φn (x) =
∑n

l=0 S2 (n, l)xl are the exponential polynomials
given by

ex(e
t−1) =

∞∑
n=0

φn (x)
tn

n!
.

From Corollary 2 (c), we have
m1∑
i1=0

· · ·
mr∑
ir=0

(−1)i1+···+ir φn (x+ i1 + · · ·+ ir)

=
1

2r

r∑
i=0

∑
J⊂[1,r]
|J |=i

(−1)mJ
n∑
l=0

S2 (n, l)E
(r)
l

(
x+

∑
j∈J

(mj + 1)

)
.
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