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Abstract

We consider internal friction of a Gaussian chain placed in vac-
uum. Dynamics of a single chain can be described by Langevin equa-
tion where the random force term comes from the random collisions
of monomers among themselves. To find the moment of these random
forces, Gaussian distribution for chain conformation is used . Since
collisions between monomers cause these forces, random forces on two
monomers can be equal and opposite at the same time. Such corre-
lation is exploited to find friction constant ζ for Fourier mode p. We
show that this same mechanism of internal friction is also applicable for
polymers in solution.
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1 Introduction

Any dissipative mechanism that does not involve solvent is referred as internal
friction in polymer physics [1], [2], [3], [4]. Some recent advancements have
renewed interest in this long standing problem. Ionization techniques such as
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MALDI(Matrix assisted laser desorption/ionization)[5] or electrospray ioniza-
tion [6] has made it possible to get large polymers in gases or vacuum. Since
friction constant is much smaller in this media, internal friction will have a
significant impact on the dynamics of polymer in gases. Also it would be pos-
sible to measure internal friction effect directly and to check the validity of
extrapolation scheme so far used for polymers in solution.

Dynamics of a polymer in vacuum has been considered theoretically [7],
[8], [9]. Also internal friction term of a polymer in vacuum has been studied
by computer simulation [10]. This friction is quite similar to that of Kelvin
friction. If by Rn we denote the position of monomer n, Kelvin friction term is
proportional to ∂

∂t
(∂

2Rn

∂n2 ). This term says how the bond angle is changing with
time. So this friction basically results in from the interaction between neigh-
bouring monomers. But polymer is an one dimensional object placed in 3D.
Monomers distant along the chain may come close in space and make random
collisions. For ideal chain, number of monomers involved in such random col-
lisions can be quite large [11]. In this paper, we will consider internal friction
that comes from random collisions between monomers distant along the chain.
Effect of this friction would be much stronger than Kelvin damping. This type
of frictional process had been considered by P.G. de Gennes [2]. He made
the assumption that friction on monomer n by monomer m is proportional
to their relative velocity and total friction on monomer n can be obtained
by taking sum over all other monomers. In essence, it’s a phenomenological
theory. Recent improvements as mentioned in the introduction necessitates a
first-principles calculation of this internal friction. At first we will calculate
internal friction in vacuum and at the end we will show that this mechanism
is applicable in solution as well.

2 Derivation of internal friction constant ζp

We propose that in vacuum, equation of motion of a single chain can be de-
scribed by Langevin equation [12]

ζ
∂Rn

∂t
= k

∂2Rn

∂n2
+ fn, (1)

where Rn is the position of monomer n, k = 3kBT
b2

[13] and fn is the random
force on monomer n due to its collisions with other monomers as shown in
figure (1). The friction constant ζ is related to the mean square momentum
transfer to a monomer by random collisions, and only other monomers are
involved in these random collisions. The value of ζ will be determined and
subsequently used to solve equation (1) in terms of normal modes.

We will assume that at temperature T , monomers will follow Maxwell’s
momentum distribution. To determine the internal friction for a Gaussian
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Figure 1: Monomers distant along the chain undergo random collisions. Ran-
dom forces on a pair of monomers can be treated as equal and opposite. Here
f5 = −f8 and f6 = −f14.

chain, the Gaussian distribution for conformations will be used to find the
number of monomers at a given distance. First let us find the mean square
momentum transfer in these collisions.

We will consider the monomers as hard spheres and the collisions they make
are elastic. If two monomers collide, the angle of deflection in the center of
mass reference frame is given by [14]

χ(bim, g) = π − 2bim

∫ ∞
rm

dr
r2√

1− ϕ(r)
1
2
µg2
− b2im

r2

,

where bim is the impact parameter, ϕ(r) is the interaction potential, µ is the
reduced mass, and g is the initial relative speed.

If R is the radius of hard sphere, rm would be 2R for impact parameter
less than 2R and ϕ(r) = 0 within the range of integration. So χ(bim) =

π − 2bim
∫∞

2R

dr
r2√

1−
b2
im
r2

= π − 2 sin−1
(
bim
2R

)
. Setting v be the speed of one sphere

in the laboratory reference frame and, with the other sphere at rest in this
frame. If ψ is the deflection angle for the sphere which is moving with velocity
v in laboratory reference frame and ξ is the deflection angle for sphere at rest,
then ψ+ ξ = π

2
. Also for equal mass, ψ = χ

2
. This gives ξ = sin−1

(
bim
2R

)
. After

the collision, the sphere which was at rest acquires speed v′ in the laboratory
frame, and from momentum conservation we will find v′ = v

(sin ξ cotψ+cos ξ)
=

v

√
1−

(
bim
2R

)2
. Thus, when a sphere with momentum p collides with a sphere

at rest, the momentum transfer for the impact parameter bim is p
√

1−
(
bim
2R

)2
.
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Now we want to know the mean square momentum transfer 〈p′2〉. Monomers
can collide with any impact parameter and can have any velocity. Therefore,
we will average over all impact parameters and incoming momentums:

〈p′2〉 =

∫ ∫
p2(1− ( bim

2R
)2)f(p)dbimdp∫

dbim
∫
f(p)dp

= 2mkBT.

It is now necessary to evaluate the number of collisions a given monomer
will have per unit time. If P (2R) is the monomer number density at a distance
2R from the center of a given monomer, the average number of collisions this
monomer will make per unit time is 〈dΓ

dt
〉 = 4π(2R)2v̄⊥P (2R). Here we will use

v̄⊥ =
∫∞
0 dvv exp

− mv2

2kBT∫∞
−∞ exp

− mv2
2kBT

, and the distribution of conformations for an ideal chain

for P(2R). As with the end-to-end radius, the distance between any two points
of an ideal chain follows a Gaussian distribution [15]. So

P (2R) =
N∑
n=1

(
3

2πnb2

) 3
2

e−
3(2R)2

2nb2

=

(
3

2πb2

) 3
2 ∑
p=0

(−1)p
(

6R2

b2

)p
.

(
1

p!

) N∑
n=1

1

np+
3
2

.

For N →∞,

P (2R) =

(
3

2πb2

) 3
2 ∑
p=0

(−1)p
1

p+ 1
2

(
6(
R

b
)2

)p
≈ (

3

2
1
3π

)
3
2

1

b3
+

1

b3
O

(
(
R

b
)2

)
.

Thus, the mean square momentum transfer per second is

〈p′2〉〈dΓ

dt
〉 =

(3
3
2 )(4)

π
(kBT )

3
2
√
m

(
R2

b3

)
. (2)

Since 〈f(t)f(0)〉 = 2ζkBTδ(t), above equation gives ζ = ( (2)(3
3
2 )

π
)(R

2

b3
)(mkBT )

1
2 .

To solve equation (1), the normal components of random forces are given
by

fp =
1√
N

∫
dn cos(

pπn

N
)fn. (3)

If monomers n and n′ collide, random forces on these two monomers will be
equal and opposite. Since all the random force terms on the right side of equa-
tion (3) come as pairs, the presence of any term (for example f1) immediately
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implies that there is another term equal to −f1. This is a very important fact,
and determines what values of fp are allowed. We want to find relaxation τp
which is proportional to ζp

kp
. Here kp is the property of the Gaussian chain

and does not change unless the temperature changes. But the term ζp will be
different if the random forces come as pairs. This imposes restrictions on the
dissipative mechanism and these are central to the remaining derivations.

We have to consider all the possible collisions with probability Pnn′ , i.e.,
probability that monomer n′ will collide with n. We will assume that two
monomers will collide only when they are at the same point and we know this
probability from the properties of Gaussian chain. Since fn = −f ′n, one term

in the summation for fp will be proportional to
(

cos(pπn
N

)− cos(pπn
′

N
)
)

. So the

time correlation of fp and fq will be

〈fp(t) · fq(0)〉 =
1

N

∫ ∫
dndn′Pnn′

[
cos
(pπn
N

)
− cos

(
pπn′

N

)]
[
cos
(qπn
N

)
− cos

(
qπn′

N

)]
〈fn(t) · fn(0)〉.

Here 〈fn(t) · fn(0)〉 is related to the mean square momentum transfer, i.e.,
〈fn(t) · fn(0)〉 = 〈p′2〉〈dΓ

dt
〉δ(t), and Pnn′ is the probability of two monomers n

and n′ being at the same point. Thus,

〈fp(t) · fq(0)〉 =
4

N
〈p′2〉〈dΓ

dt
〉δ(t)

∫ ∫
dndn′

sin
(
pπ(n−n′)

2N

)
sin
(
qπ(n−n′)

2N

)
|n− n′| 32

{
sin

(
pπ(n+ n′)

2N

)
sin

(
qπ(n+ n′)

2N

)}
.

(4)

Consider the summation

I(p, q) =
∑
n,n′

n6=n′

[
sin (p′(n− n′)) sin (q′(n− n′))

|n− n′| 32

]
[sin (p′(n+ n′)) sin (q′(n+ n′))] ,

where we have used the notation p′ = pπ
2N

and q′ = qπ
2N

. To perform the
summation we will make a change in coordinates:

u = n− n′,
v = n+ n′.
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This will give:

I(p, q) =
N∑
u=1

sin (p′u) sin (q′u)

|u| 32

2N−u∑
v=u

sin (p′v) sin (q′v)

+
−1∑

u=−N

sin (p′u) sin (q′u)

|u| 32

2N+u∑
v=−u

sin (p′v) sin (q′v) .

For diagonal element p = q:

I(p) =

∫ N

1

du
sin2 p′u

u
3
2

∫ 2N−u

u

dv sin2 p′v +

∫ −1

−N
du

sin2 p′u

|u| 32

∫ 2N+u

−u
dv sin2 p′v.

Integration over v gives [12]

I(p) = 2N

∫ N

1

du
sin2 p′u

u
3
2

−2

∫ N

1

du
sin2 p′u

u
1
2

+
1

2p′

∫ N

1

du
sin 2p′u

u
3
2

− 1

4p′

∫ N

1

du
sin 4p′u

u
3
2

.

(5)
We are interested in the modes for which p′ → 0. For the trigonometric series
the following identity [16] is used:

∞∑
n=1

sinnx

nβ
∼= xβ−1Γ(1− β) cos

1

2
πβ , for x→ 0+, 0 < β < 2.

So,

1

2p′

N∑
1

du
sin 2p′u

u
3
2

∼= 1

2p′
(2p′)

1
2 Γ(−1

2
) cos

3π

4

=
1√
2

√
N√
p

(6)

1

4p′

N∑
1

du
sin 4p′u

u
3
2

=

√
N√
p

(7)

2N
∞∑
u=1

sin2 p′u

u
3
2

∼= 2N

1
p′∑
u=1

(p′u)2

u
3
2

≈ 4
√
π

3
√

2

√
N
√
p (8)
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2
N∑
u=1

sin2 p′u

u
1
2

=
N∑
u=1

1− cos 2p′u

u
1
2

=
N∑
u=1

1

u
1
2

−
N∑
u=1

cos 2p′u

u
1
2

∼= 2(
√
N − 1)− 1√

2

√
N√
p

(9)

Using (6),(7),(8) and (9) in (5), I(p) is given by

I(p) =
√
N

[
1.67
√
p+ 1.12

1√
p
− 2

]
,

which leads to the following result for ζp:

ζp = 0.42 (mkBT )
1
2

(
R2

b3

)[(1.67
√
p+ 1.12 1√

p
− 2)

√
N

]
(10)

This derivation is true for p′ → 0. For a finite chain the 1√
p

term can not be

neglected compared to
√
p. For very large chain, p′ → 0 for large p. Thus,

1√
p
� √p. In that case, ζp would be similar to de Gennes term [5], which is

proportional to
√
p√
N

. Also from an experimental point of view, only very small
p’s are important, because relaxation times for large p are very fast and hardly
measured experimentally.

Consideration of non diagonal term shows that correlation for different
normal modes do not vanish [12]. We leave for future work how this non-
diagonal elements in correlation matrix affect the dynamic structure factor.

3 Internal friction in solution

When a polymer is in solution, this mechanism for internal friction is still
applicable. In the equation of motion, a random force term must be included
to account for the collisions with other monomers. When two monomers collide
in vacuum, the non colliding monomers do not know about the event unless
they are nearest or next nearest neighbors. But in solution when two monomers
will collide, the information of the collision is carried to other monomers by
hydrodynamic interactions. We need to know what velocity field would be
created for a pair of equal and opposite forces, as determined by the behavior
of the Oseen tensor. Velocity field at monomer n due to random force at m is

vn =
∑

Hnm · fm,
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mm′

n

rnm

−fx fx
x

y

rnm′

Figure 2: Velocity field created by a pair of random forces. Monomer m is
at the origin. Monomer m′ is making a head-on collision with monomer m.
Monomer n is at a distance rnm from m. The Oseen tensor gives the velocity
field at position rnm.

where Hnm is the Oseen tensor:

Hnm =
1

8πηrnm
(I + r̂nmr̂nm) .

For a pair of force fx and -fx, as shown in figure (2), velocity components
are [17]

vx =
fx

8πη

[(
1

rnm
+
x2
nm

r3
nm

)
−
(

1

rnm′
+
x2
nm′

r3
nm′

)]
,

vy/z =
fx

8πη

[
xnm (ynm/znm)

r3
nm

− xnm′ (ynm′/znm′)

r3
nm′

]
.

From these equations it can be shown that [12] for a pair of forces, vn ∝
R2

r2nm
+ 0( 1

r3nm
). Since for a Gaussian chain r2

nm ∝ |n −m|, the velocity field at

monomer n for a pair of equal and opposite forces at monomer m is ∝ 1
|n−m| .

The solution of Zimm model, which includes the hydrodynamic interaction,
uses the following Oseen tensor for a Gaussian chain [13]:

Hnm =
I

6π3|n−m| 12ηb
= h(n−m)I.

In terms of normal modes the equation of motion in Zimm model is [13]

∂Xp

∂t
=
∑

hpq(−kqXq + fq),

where

hpq =
∞∑
∞

h(m) cos
(pπm
N

)
.
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As in Zimm model if we take h(m) = m−
1
2 , then

∑ cos(pπm
N

)

m
1
2

∝
(
N

p

) 1
2

.

Consider the pair of forces, h(m) = m−1, which gives [16]

∑ cos(pπm
N

)

m
= − ln

(
2 sin

( pπ
2N

))
. (11)

Since the right side of equation (11) is negligible compared to (N
p

)
1
2 , the hy-

drodynamic interaction due to a pair of equal and opposite forces is negligible
compared to the hydrodynamic interaction from a single random force. There-
fore, we can safely say that the momentum transfer from monomer to monomer
is direct and does not involve solvent. Thus, the mechanism of internal friction
in vacuum is applicable in solutions as well.

4 Conclusion

We have shown first-principles calculations of internal friction. For polymers
in vacuum, the dynamics of a single chain can be described by the Langevin
equation where the random forces are correlated. For polymers in solution,
the Langevin equation contains two random force terms. One arising from the
solvent particles and the other from collisions with other monomers, and these
two are utterly uncorrelated. We have shown that hydrodynamic interaction
term for random forces caused by collisions between monomers is negligible
compared to the term that arises due to solvent particles. Therefore, the dy-
namics in solution can be described by the Zimm model with an extra friction
term which is internal; extrapolation of solvent viscosities to zero would reveal
this residual dissipation.
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