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Abstract 

 

The paper suggests a method to solve Neumann boundary value problem with 

heterogeneous boundary conditions for electric field potential in relatively weak 

magnetic field in linear approximation. This occurs while measuring Hall effect 

with the help of probe methods. The expression for Hall field potential has been 

obtained, which is convenient for further practical use. 
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1. Introduction 

 
In modern semiconductor electronics, materials that are characterized by 

anisotropic electrophysical properties are considered promising [1, 2]. Anisotropy 

of materials may be either natural - determined by crystal structure, or artificial - 

caused by the influence of external fields or deformations. 

While theoretically grounding and developing probe methods of anisotropic 

material study one must solve electrodynamics boundary value problems (BVPs) 

[3, 4]. In particular, this necessity appears when one deals with probe 

measurements in magnetic fields while mathematically modeling electric fields. 

This task requires the solution of Neumann BVP [4]. 

The given work considers the method of boundary value electrodynamic 

problem applied to probe methods of measurement of anisotropic semiconductors 

parameters. 

 

2. Boundary Value Problem Construction 
 

   Let us determine the potential distribution in galvanomagnetic phenomena in 

anisotropic rectangular semiconductors in case of probe measurement of the Hall 

coefficient (Fig.1). In the case considered, the rectangular sample is cut out so that 

its faces are parallel to crystallographic planes. The sample is placed in a 

transverse magnetic field B, a direct electric current )12(I  (hereinafter, the 

subscripts in parentheses correspond to the contact numbers) passes through 

probes 1 and 2 (Fig.1). In this case, the electric-conductivity tensor is already 

nondiagonal [5]: 
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where x , y , z  are the components of the diagonal tensor of the electric 

conductivity with the magnetic field absent, zR  is a component of the coefficient 

Hall tensor. 

Note that here the components of the electric-conductivity tensor depend 

linearly on the magnetic field induction B. This means that the Hall effect is 

considered in the region of relatively weak magnetic fields ( 1)( 2 B ), when the 

effect of the magnetic resistance that is determined by the 2B  – containing terms 

can be disregarded. 

With no charge sources and drains we suppose [5]: 

 

 0div j , (2) 
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where 
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Fig.1. Schematic diagram of the arrangement of the current probes for anisotropic 

semiconductor placed in the transverse magnetic field. )12(I  is probe current; 

),( 11 yx , ),( 22 yx  are coordinates of probe centers; a , b , d – film size. 

 

Consequently, according to formulae (1) – (3), electric field potential in the 

sample area satisfies the equation: 
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Normal component of the current density vector on the surface of the 

sample under the study is different from zero only under current probes. 

According to Ohm’s law (3) and the type of conductivity tensor (1) we obtain 

boundary conditions: 
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where j is current density vector; a, b, d – length, width and thickness of the 

sample,  y ,  x  — Dirac delta function, the usage of which is justified only 

for the current probes with small entry sectional area. 

 

3. Method of Solution 
 

It should be noted that the presented boundary value problem (4) – (8) 

doesn’t belong to typical Dirichlet or Neumann BVPs. At present there’s no exact 

mathematical solution to this problem. However, because the assumption of the 

linearity of the potential   with respect to B  was used, its solution can be 

represented in the form of a linear approximation with respect to the magnetic 

field. Thus, the desired potential can be represented as 

 

 Н  0 , (9) 

 

where 0  – is the potential of the electric field in the absence of an external 

magnetic field, Н  – is the potential of the Hall field, which arises in the sample 

after switching the external magnetic field on. In this case, each of field 

components (9) must satisfy equation (4). 

Substituting solution (9) into BVP (4) – (8), we obtain the corresponding 

BVP for the potential 0 : 
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and for the potential H : 
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The solution of the BVP (10) – (12) has been described several times in 

literature [3, 6, 7]. That is why we present here only the main stages of its 

solution. Let us represent the general solution of equation (10) in the form of the 

trigonometric Fourier series 
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After substitution (16) into (10) we obtain the equation for the function 
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Solution of the equation (18) may be presented as the sum of hyperbolic 

functions 
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Coefficients nkC and nkD  are obtained by mean of substituting boundary 

conditions (12) into function (16). Omitting the very cumbersome procedure of 

solving, let us just produce the final expression for 0  
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Solution of the boundary value problem (13) – (15) causes certain 

difficulties and isn’t presented in the scientific literature. But, we have managed to 

work out the technique, which makes it possible to solve the given problem in the 

region of relatively weak magnetic fields. In boundary conditions (14) due to the 

condition used, we disregard summands 
y

BR H
zyx
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x
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are proportional to В2 (as В2 is dependant linearly on the magnetic strength B) [5]. 

Thus, boundary conditions (14) for potential of the Hall field acquire the 

form: 
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The solution of the equation (13) can be represented as  

 НHH VU  ,  

where boundary value problems for HU  and НV  correspondingly acquire the 

form: 
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Let us solve boundary value problems (23) – (25) and (26) – (28) by the 

Fourier method, analogous to the solution of problem (10) – (12). After finding  
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the expressions for functions HU and НV  we obtain the expression for H : 
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(29) 

 

where Ank is determined by the expression (21) and 

 app   , brr   , dqq   , dss   , (30) 
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Note that the index pairs (n, r) and (k, p) mustn’t acquire simultaneously the same 

expression: rn  , pk  . 

 

4. Analysis of the Obtained Solution and Practical 

Recommendations 
 

   Obtained solutions (20) and (29) make it possible to analyze current potential 

distribution and current density in anisotropic samples placed in external magnetic 

field. These solutions also enable us to offer theoretically grounded techniques for 

measurement of the component of tensor electrical conductivity and Hall 

coefficient [3, 6, 7]. Obviously, these formulae are hard to put to practice in the 

form they are presented above, that is why, as a rule, in practice approximation of 

thin samples is used, when the distance between current contacts 1and 2 is much 

bigger than thickness d. It should be noted that in practice of probe methods 

measurements four-probe test device is used, which has a rigorously defined 

distance between current and measurement probes, plus, all measurements are 

carried out on the surface of the plate, that is at 0z . Taking this into account, 

let’s rigorously define the coordinates of the current probes:     01101 , bylax  , 

    02102 , bylax  , where  00 ,ba  are coordinates of the test device, is the 

distance from the center of the test device to the current probe. Then the  
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expression (29) for Н  acquires a simpler form: 

 

 
      

 

















...,1,0
...,2,1,

222
100

2

2

12 )sin()cos(sin1116

k
pn pknkp

knkk
pn

k

z

zyx

H

lba

bda

BRI








  

 
      

 
  










 x

b

yby
p

p

p
k

p





cos

sinh

cosh1cosh
 

 
      

 
















...,2,1,,
222

100
2

2

12 )sin()cos(sin1116

rkn rnnkr

knkn
rk

z

zyx lba

dab

BRI








 

 
      

 
 









 y

a

xax
r

r

rr
n





cos

/sinh

/cosh/cosh1
,    (32) 

 

where yx    is the parameter of conductivity anisotropy. 

It should be noted that for practical calculation of the potential it’s necessary 

to take not less than 100 terms of series for each of summable indices (n, k, p, r) 

with measurement error no more than 2-3%. 

Fig.2 represents the equipotential lines built by expression (20) – without 

magnetic field (Fig. 2, a) and by expressions (9), (20), (32) with the magnetic field 

present (Fig. 2, b). While modeling the following parameters were used: 2/ ba , 

01.0/ ad , aa 0 , bb 0 , al 75.01  , xzy  25.0 , 2.0BRzyx . 

The given results demonstrate that the effect of magnetic field produces potential 

difference between symmetrical points on opposite sides of the sample (Hall 

effect voltage). 

 

  
a) b) 

 

Fig. 2. Models of the electric field in thin anisotropic samples (а – 0B ; b – 

0B ). 

 

The obtained expression (32) enable us to offer techniques for experimental 

assessment of Hall electromotive force at probe measurements, the practical  
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realization of which doesn’t require having solder contacts on the edge of the 

samples. It, in its turn, speeds up the process of semiconductor kinetic parameter 

measurements. It should also be mentioned that one needs modern computers to 

apply the obtained expression to practical usage; computers are necessary to 

calculate series in expressions (20) и (32). So, on the basis of the solution of 

boundary value electrodynamic problem we’ve obtained the expression for Hall 

field potential in linear approximation. The expression (32) for field potential is 

represented in the form convenient for further calculating Hall electromotive 

force. 
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