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Abstract 

 
The expression for the Bhatia-Thornton partial structure factor “number density –  
number density” for arbitrary two-component hard-core fluid in the random phase 
approximation is obtained.        
 
Keywords: Hard-core mixture, random phase approximation, Bhatia-Thornton 
partial structure factors  
 

The Bhatia-Thornton [1] structure factor “number density – number density”, 
)(qSNN , is connected with the Ashcroft-Langreth (AL) partial structure factors [2], 

)(qSij  (where i,j=1,2), by the following way:  

)(2)()()( 1221222111 qSccqScqScqSNN   .              (1) 

Here, ic  is the concentration of the i-th component. 

The random phase approximation (RPA) for a classical binary fluid is 
formulated as follows:    

)()()( 10
RPA rrcrc ijijij   ,                      (2) 

where )(rcij is the partial direct correlation function, )(rij  - partial pair 

interatomic potential, 1
B )(  Tk , Bk  - Boltzmann constant, T - temperature, 

symbols “0” and “1” are attributes of a reference system and perturbation, 
respectively. 
Arbitrary hard-core (HC) model potential, )(HC rij , can be written as follows:  
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where ij  are the partial HC diameters. For this case, the hard-sphere (HS) 

model is the reference system and Eq. (2) is being rewritten as follows: 
)()()( HSHC-RPA rrcrc ijijij   .                   (4) 

In the wave space Eq. (4) is     
)()()( HSHC-RPA qqcqc ijijij   .                   (5) 

Recently, for the potential (3) within the RPA, the expressions for AL partial 
structure factors were obtained [3]:  
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where   - mean atomic density of a mixture, ji  ,  
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HSHS2 )()(2)()(1   .                         (8)  

Here, we combine Eq. (1) with Eqs. (6)-(8) to obtain the RPA-HC expression 
for )(qSNN

: 
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where )(q  is the Fourier transform of the ordering potential,   

)(2)()()( 122211 rrrr    .                  (10) 

 
References 
 
[1] A.B. Bhatia, D.E. Thornton, Structural aspects of the electrical resistivity of 
binary alloys, Phys. Rev. B, 2 (1970), 3004-3012.  
 
[2] N.W.Ashcroft, D.C.Langreth, Structure of binary liquid mixtures. II., Phys. 
Rev., 156 (1967), 685-692. 
 
[3] A.B. Finkel’shtein, The Random Phase Approximation for Binary Hard-Core 
Mixture, Adv. Studies Theor. Phys., 8 (2014), 387-388.    
 
 
Received: May 11, 2014 


