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Abstract 

 

A one-dimensional model is presented, in which a photon, confined in a cavity, 

represents a model of mass. Photon-particle-interaction is reduced to a free pho-

ton-confined photon interaction, for which changes in momentum are exclusively 

Doppler-based. The energy conservation itself describes a “storing” of the collid-

ing free photon in the cavity. It fuses with the confined photon and decays in 

spontaneous or delayed fashion by emission of a Doppler-shifted free photon. De-

layed emissions lead to a “stop-and-go” motion of the cavity in accordance with 

the quantum mechanic de Broglie relation between momentum and wavelength. 

This kind of motion consumes no energy and overcome potentials with minimum 

energy consumption. To simulate a massless cavity, the model requires the exist-

ence of a photon pool similar to the zero-point radiation described by Casimir 

(1948). This photon pool and a thermal fraction help to stabilize and conserve the 

cavity. Acceleration by means of a swarm of incident free photons at a cavity trig-

gers a series of phase mismatches with the confined photons which lead to a dis-

tortion of the pool distribution. It is expected that an attractive “stop-and-go”-

displacement of probe masses behind the accelerated cavity takes place – an effect 

consistent with energy conservation.  

 

PACS: 32.80.-t, 14.80. -j, 03.30.+ p,  03.65.-w 
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1.  Introduction  
 

Currently world wide effort is focused on the questions of what is mass, how 

mass comes to elementary particles, and why masses move with velocities below 

the speed of light. Following a theory of Higgs [1] and others, the so called Higgs 

field gives elementary particles such as Z- und W-Bosons their mass. At the pre-

sent time the search for a so-called Higgs particle coming from the Higgs field is 

continued at the Large Hadron Collider (LHC) in CERN. Of similar importance is 

the question of why the mass of a proton is larger by a factor of nearly hundred 

than the mass of the constituent quarks [2]. Obviously, the force that confines the 

quarks in the proton is accountable for this mass amplification effect. Following 

the Standard Model [3], the interaction of quarks happens via gluons in an ex-

change process. An interesting question is of course how these gluons generate 

mass [4]. The model which is presented here tries to follow up on this question 

and defines a mass for which particles that travel with the speed of light are con-

fined in something which will be called cavity in the following. The cavity itself 

should of course be “massless”; the particles are proposed to be thermal photons 

with well known behavior in terms of momentum, energy and Doppler Effect. 

In the proposed model, the thermal photons inside the „massless” cavity are 

continuously reflected back and forth with 180°-Compton collisions at mirror 

walls. Although photons move with the speed of light, if they are localized, or 

confined in a cavity, they behave as if they have mass (a fact already pointed out 

by Einstein [5] when he discussed the mass of heated matter). It can be demon-

strated that confined photons gain momentum and kinetic energy in the same 

manner as an ordinary mass. Therefore, in the following the unit of thermal pho-

tons confined in a cavity will be called photonic mass. This model only works if 

space contributes a photon pool that causes a stabilizing counter-pressure to the 

confining cavity. Absorption and emission of free photons by localized confined 

photons allow insight into the mechanism of the conservation of energy and of the 

resulting quantum mechanical implications. All conclusions concerning momen-

tum and energy rely on 1-dimensional relativistic calculations. This means that 

only perpendicular components of the wave propagation with respect to the cavity 

walls are considered. The situation of isotropically distributed propagation of the 

wave needs higher dimensionality in the description. The same is true with effects 

such as spin, polarization etc.. It is important to note that results based on this 

simple model may not describe reality in detail but may still give useful infor-

mation. Since the Compton process as the standard collision process plays a dom-

inant role, the description starts with the main features of collision physics. 

http://de.wikipedia.org/wiki/Z-Boson
http://www.woerterbuch.info/deutsch-englisch/uebersetzung/accountable.php
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2. Three fundamental equations describe the elastic Compton col-

lision  
 

 

During reflection processes of photons with charged particles the Compton 

shift appears i.e., the wavelength of interacting photons is shifted. It is the conclu-

sion of several authors [6, 7, 8, 9] that these shifts are identical to Doppler shifts, 

that is, after the interaction a particle moves with the velocity vc  and the in-

teracting photon, coming back from the particle, is Doppler-red-shifted with re-

spect to the relative velocity ´c. This is demonstrated next for the case of an elas-

tic 180° Compton collision

With the dimensionless abbreviations mckmchcmh /// 2   , 211    

and for an initial velocity 0  of the charged particle with mass m, by means of 

mutual addition and subtraction the well known solutions of both equations: 
 

    

                               Energy:   1     (1) 

   Momentum:   0    (2) 

 

are, where “prime” indicates the situation after the collision:   

     





21
    (3) 

     





21

2
1

2


     (4) 

The Doppler equation can be derived if Eq.1 and 2 are rewritten as: 

     1      (5)   

           (6)   

Subtraction:     21    (7) 

Addition:     21    (8) 

  

From the definition of γ one easily derives:  






1

 (9) 

Eq.7 and 8 result in: 

      



21

1
21 .  (10) 

A comparison with Eq.3 gives: 

     



 ,    (11)   

which is the Doppler equation. This result suggests the following interpreta-

tion: 
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CONCLUSION 1. The Compton Effect can be understood as a two step 

event. The first step is the reflection of the photon, when both mass and 

photon change from the laboratory system into the moving, colliding sys-

tem. Then, in the second step the retransformation of the photon into the 

laboratory system takes place. In this step the Doppler red-shift as formu-

lated in Eq.11 occurs.  

 

Since a change of photon energy is exclusively a result of Doppler shifts (see 

ref. 6-9), the Compton collision for these kinematics can be derived directly from 

momentum conservation and the Doppler shift: 

Using 211    the Doppler equation   1  gives:   

   
22

22









   and  











2

22

.  (12) 

Inserted into the momentum equation  0  the solutions Eq.3 and 

4 follow, without making direct use of energy conservation. The elastic Compton 

collision process seems to be reasonably described by momentum conservation 

and Doppler shift alone. It is easy to show that Doppler- and energy equations 

yield the same results; all combinations of two of the three fundamental equations 

describe the elastic Compton collision. Mathematically seen the Compton Effect 

is overdetermined. The question arises, how these equations relate to the others 

and why and does it matter? 

To answer this, I propose a model in which the particle mass is generated by 

confined photons and that allows to simplify the photon-particle interaction into a 

photon-photon interaction. As mentioned, in this model of photonic mass the pho-

tons are confined in a cavity, reflect back and forth between two mirrors and cre-

ate rest energy. Motions of the cavity imply simultaneously Doppler red and blue 

shifts of the confined photons, and in addition to the rest energy a kinetic energy 

term appears. Therefore a collision with a free photon eventually leads to Doppler 

shifts of all involved photons – no matter whether they are free or confined. This 

leads to the conclusion that energy conservation can be regarded as based on Dop-

pler shifts, that is, energy conservation is a Doppler shift conservation. But this is 

only part of the truth. Energy conservation describes a fusion- and decay process 

between free photons and particles, that is, confined photons, that is, photonic 

mass (see Sect.7). This leads to a quantum mechanical behavior of these particles 

(see Sect.9) 

To simulate realistic mass particles, the assumption of a massless cavity that is 

constructed from weightless mirrors must be introduced. Mechanical stabilization 

by rods, springs etc., leads to vibrations of the cavity, which cannot be observed 

for real particles (see Sect.3.1). To stabilize the geometric arrangement of the 

cavity mirrors (i.e. the mirror distance), a non-closed physical system is taken into 

account (see Sect.3.2). This calls for the cooperation of a surrounding photon radi-

ation field similar to what Casimir [10] described as the zero-point radiation of  
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space. The geometrical arrangement of mirrors and photons is the subject of the 

next Section. 

 

 

3. Confined light in a cavity which is at rest or in uniform motion 
 

During reflection at a mirror, propagating waves build up a standing wave pat-

tern. In a cavity with two mirrors with perfect photon-reflecting capability, set up 

in parallel at a distance L, the spectrum of standing waves appears: 

    
n

L2
 ,  where ....,2,1n . (13) 

  In principle, each of the standing waves with wave number n can be populated 

with an arbitrary number of confined photons.  

 
Fig.1:  A cavity at rest and in motion in a space-time presentation where the 45°-lines represent 

the zigzag spread of a wave 

 

Figure 1 shows a cavity at rest (left) and in motion (right) in a Minkowski 

space-time presentation. For the case n = 2L/ =1, the 45°-lines show the zigzag 

spread of the wave front (solid line) and the wave end (dotted line). The thick ar-

rows are connection lines between wave ends to fronts. In a system at rest they are 

denoted as „wavelength“. In a moving system they are slanted and 2-vectors (since 

the model is 1-dimensional). 

The half wave moving to the right is blue- and the half wave moving to left is 

red-shifted since they reflect at the approaching and receding sides of the mirror, 

respectively. 

On the basis of a common zero point, the expressions of the Lorentz transfor-

mation are  

     
 
 tcxx

xtctc








 ,   (14) 

here “prime” indicates a different reference system. In Fig.1, the observer moves 

to the left. Therefore   is negative. The transformed coordinates are:  
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        0,00,0 
      (15) 

          LLL  ,0, 
     (16) 

          LLL  ,,0 
     (17) 

             


1,1, LLLL      (18)  

          LnLnnL  ,,0 
     (19) 

             


nLnLnLL ,1,   (20) 

The transformed distance between the mirrors which is related to the wave-

length is a 2-vector. The corresponding space and time intervals of the wavelength 

are:  

            LLL  ,0,00, 



    (21)  

          LLLLL  ,,0, 



   (22) 

and so on. As can be seen in Fig.1, right graph, the length contraction of a moving 

cavity is /L , which is in agreement with standard relativistic models. To show 

this: The slope of the ct´ line in Fig.1 is /1 . Using Eq.16, a line through (L,0)´ 

with this slope intersects the line y = 0 at    /1 2 LLx  . 

 

3.1    Problems with the physics of a real cavity  
In many regards, Fig.1 does not represent a realistic model for a “free” particle, 

constructed solely from confined photons located in a mirror system in a massless 

cavity. To give an example: Assume two photons with a phase difference of  in 

the cavity. At any time, the momentum transfer of the left-reflecting photons must 

be compensated exactly and instantaneously by the momentum transfer of right-

reflecting photons to maintain the mirrors at rest. Massless mirror connection rods 

for momentum transfer are physically not available; instantaneous momentum 

transfer contradicts the finiteness of the speed of light. In addition, any mass-like 

rods lead to spacing vibrations between the mirrors and increase the internal ener-

gy. In this case, the energy balance for inelastic collisions should be: 

      1    (23) 

where ´ represents the vibration excitation. In photon-particle (i.e. electrons or 

protons) interactions the term ´ is zero. Therefore in this model a pool photon 

scenario is chosen where external photons reflect simultaneously with confined 

photons to compensate the mirror momentum. 

 

3.2 An external photon pool such as Casmir’s zero point 

radiation generates pressure at the cavity walls 

The proposed mechanism to maintain the distance of the mirrors is an external 

photon pool, as illustrated in the Minkowski space-time presentation in Fig.2 (out-

side reflecting photons with arrows). Massless mirrors are placed in a standing 

wave field of pool photons and confined photons. Reflections take place simulta- 

 



 

Momentum and energy of a confined photon                                                    561 

 

 

neously at the inside and outside of a mirror, so that both mirrors remain at rest or 

in uniform motion – a process which is proposed to be called in-phase.  

 

 
 

Fig.2: Space-time frame of simultaneous reflections of confined photons with external photons 

(thick arrows) for the cases of a cavity at rest (left) and in motion (to the right). This process will 

be called in-phase. 

 

If a cavity is at rest, one would observe that confined photons 
k  and pool 

photons 
pk  reflect instantaneously without Doppler shift, as shown in Fig.3 

(left). If the cavity or the observer moves, all photons which interact with the cavi-

ty mirrors undergo red and blue shifts, as shown in Fig.3 (right). In this graph the 

abbreviations 

   1D  and     1
1

D
     (24) 

describe the red and blue shifts of pool- and confined photons in a moving cavity, 

where the form of the blue shift in Eq.24 can easily be derived using Eq.9. 

 

 
 

 

Fig.3: Space-time presentation of confined and pool photon reflections at cavity mirrors at rest 

(left) and in motion (right). Since photon momenta transferred to the mirrors are equal, the mirrors 

remain at rest or in constant motion after reflection. 
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The path of the blue-shifted confined photon 1Dk  is obviously longer than 

the red-shifted one Dk , an outcome that is unexpected. This issue will be inves-

tigated in the next Section. 

 

3.3 A standing wave in a moving reference system re-

mains a standing wave 
At first glance, the presence of a standing wave between a pair of moving mir-

rors (see Fig.1) seems to be impossible because the wavelengths of red- and blue 

shifted waves are not the same. However, relativity theory contradicts this, as will 

be demonstrated next:  

A standing wave in a cavity is equivalent to a standing wave in front of a mir-

ror at rest. During the reflection of a wavetrain, one wave moves toward and the 

other moves away from the mirror: 

     cxtietcxF /       (25) 

     cxtietcxF /       (26) 

Superposition of both waves gives (reflection at a mirror): 

       

   cxeieee

eeeeeetcxFtcxFy

ticxicxiti

cxiticxiticxticxti

/sin2//

////













          (27) 

which results in a standing wave. In the case of a moving mirror the Lorentz trans-

formation: 

  
 
 xtctc

tcxx








      (28) 

gives: 

       
 

       
 

waveshiftedredeetcxFtcxF

waveshiftedblueeetcxFctxF

xtcD
c

i

xtcci

xtc
Dc

i

xtcci



















1/

1/

 The superposition y´: 

   
       xtcci

e
xtcci

ey

tcxFtcxFy









 1/1/

    









 x

c
ietcxciey tixtcci 

  sin2/sin2/  (29) 

that is the expression for a standing wave in a moving reference system. 

A standing wave in a moving reference frame remains a standing wave, even 

though photons are Doppler shifted. Red and blue shifts do not imply a phase 

mismatch of the standing wave in a cavity, although the wavelengths differ. Such 

conclusions will not appear if the real and imaginary parts of the wave are consid-

ered in the calculation. This result is also in agreement with the well known invar- 
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iance of the wave number as well as with the invariance of the phase in Special 

Relativity [11]. 

In contrast to the behavior of free photons, confined photons in a standing wave 

in a moving reference frame undergo length contraction (transverse Doppler Ef-

fect) and time dilation just like moving masses.  

The overall momentum and the Doppler situation in the pool remain unchanged 

for a moving cavity. Reflected, Doppler-shifted pool photons such as Dk p  (see 

in Fig.3, right) have the same momentum as if they approach from the opposite 

side and penetrate the cavity ( Dk  represents this). Locally, it looks like a trans-

fer from the pool- into confined photons and then as a transfer back into pool pho-

tons: 

 

  
111 







right
p

left
p

right
p

left
p

DkDkDk

DkDkDk




    (30) 

 

Equations 30 also give a proof that the neutrality of the pool distribution is not 

disturbed by the presence of a cavity, whether it is at rest or in uniform motion.  

 

 

3.4 A photon pool consisting of Casmir’s zero point radiation 

and an   additional thermal component 
 

 

At a first glance, the demands on the quality of space, as sketched above, seems 

to be unrealistic. But in the field of quantum electrodynamics, Casimir and Polder 

predicted properties of zero-point radiation in space that may fulfill such require-

ments [12].  Space is filled with electromagnetic zero-point radiation of nearly 

unlimited energy. Electrical conducting plates as shown in Fig.4 positioned at a 

distance L experience apparent attractive forces. They result from the fact that 

inside the cavity standing waves are established with ...L
2
1,L

3
2,L,L2  Outside 

an additional pattern of standing waves with ....L8,L6,L4 up to the diameter of 

space is present. Therefore, the flux of photons outside the plates is larger than 

inside the cavity. For the pressure P, Casmir’s computation gives: 

4

2

240 L
cP


 .     (31) 

   It has been possible to measure the so-called Casimir force at metallic foils posi-

tioned at a distance of a few micrometers [13].  It should be mentioned that the 

distribution of wavelengths follows a cubic distribution that has an identical shape 

in any relativistic system [14]. Therefore, relativity is not affected in this standing-

wave framework.  
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Fig. 4: Conducting plates at a distance L, where the number of modes inside is smaller than 

outside with the consequence that the outside long wavelength modes (i.e., L4 ) generate an 

inwardly directed force on the plates. 

 

A cavity embedded in zero-point radiation will experience an overshooting 

outer pressure coming from the long wavelength spectrum. The pressure on the 

outside may be balanced by reflecting confined thermal photons on the inside. For 

instance, the pressure Pconfined of n confined photons in a gap with a width of L, a 

wavelength L2  and a nonrelativistic momentum transfer of 


 2
2   during re-

flection, acting on an area of about L
2
 is: 

   
22

1

LL

c
nPconfined


      (32) 

A comparison with Eq.31 shows that the pressure described in equation Eq.32 

is approximately a factor of /240 n larger; that is, an expansion of the cavity 

would take place. In addition to the zero point radiation, an outside acting thermal 

radiation is needed to balance the force acting on the cavity i.e., the photon pres-

sure acting on both sides of each mirror is the same and the gap distance remains 

constant at L: 

   
444

2

240
1

240 L

c
n

nL

c
n

L
c


 














  (33) 

A stabilizing thermal fraction (second term in Eq.33) is required. A spectrum of 

ultralong wavelength photons with wavelengths up to m2510  (dimension of space) 

could represent the required thermal fraction. This isotropic long wavelength spec-

trum plays a decisive role in a theory of mass attraction governed by scattering and 

screening of photons as a new model of gravitation [15] (in this model a thermali-

zation via the photoelectric effect seems suppressed since the oscillation time of a 

photon with m2510  is several billion years). If this is true, a unified theory be-

tween photonic mass and gravitation may be within reach (see Sect.14 Outlook). 
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In principle, the number n of confined thermal photons in the cavity can be un-

limited. This is also true with higher modes ,....3,2,1,
22




jwith
L

jk


and so on. 

However, on the basis of a given density of thermal pool photons (Eq.33, second 

term), the cavity will expand in a spacing between the mirrors proportional to L
4
 

(see Eq.32) to reduce the expansion pressure.   

 

3.5   Mass of confined photons in a cavity 
The number n of confined thermal photons existing in a massless cavity at rest 

represents a mass m
*
 with 2/n photons propagating to the left and 2/n photons 

propagating to the right: 

 

     rightleft knknkncm 
2
1

2
1 ,  (34) 

    In the simplest case, k
*
 is the wave vector with the magnitude

L

k

2

1

2





. In this 

case, the photons builds a standing wave pattern with synchronous right- and left-

propagating half waves. As mentioned above, the number of confined photons n 

can have values 2,1n  and so on. The mass of the cavity at rest increases propor-

tionally to the number n of confined photons. Of course, a proportional increase of 

mass will also take place with higher modes of a confined photon 

,....3,2,1
22




jwith
L

jk


.  

 

4. Behavior of a photonic mass versus a classical mass 

 

We now discuss the momentum of confined photons in a moving cavity: In 

Fig.3 (right) one can see that confined photons in a moving cavity are Doppler-

shifted. The cavity walls remain in uniform motion and the mirror distance re-

mains constant but is contracted by the γ-factor. A confined photon in a moving 

cavity with mass m has the momentum 
D

k
when propagating parallel and Dk  

when propagating antiparallel to the cavity’s direction of motion. Since in the der-

ivation of Eq.25-29, the behavior of a standing wave is conserved when the cavity 

is in motion, the averaged magnitude of the momenta of the confined photons (in 

the ground state i.e.,
L

k

2

1

2





) is increased and can be written using Eq.24 as: 

  cmkn
D

Dk
n

Dk
n

D

kn 










 

 1
*

222
, (35) 

The averaged magnitude of the momenta of a photonic mass is of course relat-

ed to the kinetic energy. Equation 35 shows that the mass of a “photonic mass” 

increases in the same manner as an ordinary mass. The physical meaning of the  
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momentum m
*
c is, if all confined thermal photons  

n

k escape in one direction, 

the resulting recoil momentum of the escaped photons is m
*
c. In analogy to Eq.35, 

the resulting momentum of confined thermal photons gives the resulting momen-

tum of the photonic mass: 

  cmknD
D

k
n

Dk
n

D

kn 










  

 1

222
 (36)    

As can be seen in Eqs.35 and 36, the terms on the right, such as kinetic energy 

and momentum, relate to an ordinary mass and the terms on the left relate to cor-

responding Doppler shifts of counter-propagating, confined thermal photons in a 

photonic mass: 

     2
1

 D
D

     (37) 

    2
1

D
D

     (38) 

Equations 37 and 38 have the form of ordinary mass – photonic mass equiva-

lence equations. 

 

5. Principal considerations for a velocity change of a photonic 

mass 
 

Let a free photon with wave vector k collide with a cavity or with a photonic 

mass at rest. This is a situation that can be described by a 180° Compton collision, 

but details where the free photon collides is the subject of Sect.7. After the colli-

sion, the cavity recoils. If one lets further free photons collide with a moving cavi-

ty, during a subsequent time interval then a model of mass acceleration is created. 

Of course, the acceleration is not continuous but stepwise. In QED “fields” and 

“forces” are produced by a charge via exchange of virtual photons with other 

charges. The presented model considers velocity changes of particles as a result of 

photon collisions. 

As can be seen from Fig.5, a transition of a cavity from rest to motion repre-

sents a change in the spacing between the mirrors from L to /LL  . A simple 

connection framework is shown in Fig.5. 

 
 
 Fig.5: The free photon collision leads to a discontinuous transition of a cavity at rest into one in 

motion 
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     This framework illustrates that after the front mirror starts to move, the oppo-

site rear side of the cavity starts moving with a delay. It resembles slightly the 

deformation of a kicked ball. The path of the colliding free photon has not been 

included, since the following investigations show that neither the kick at the front 

nor the one at the rear side is the location at which the reflection takes place. Nev-

ertheless, the “kick model” is the simplest description of the envelope of a parti-

cle. 

By means of elementary geometry, the transition time ct  is found to be: 

    L


 1
      (39)     

However a critical point is synchronization between the external collision of the 

Compton photon and the internal collisions of the confined photons without de-

stroying the standing wave scenario. We assume propagating and counter-

propagating photons with a phase correlation π as shown in Fig.6 and a sudden 

inclination as shown in Fig.5. 

 Generally the introduction of the confined photons into the inclined tube 

changes the phase relation, except for a special configuration as shown in Fig.6 

(left) that conserves the phase relation π. In this case the front mirror starts to 

move with the delay tx after the last reflection of the confined photon at this mir-

ror.  

 

 

 
 

 

Fig.6: Three examples how a confined photon (standing wave situation) transits from a cavity at 

rest into a cavity in motion. Only the example on the left gives the phase conservation correctly. 
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The following conclusions can be drawn from this framework: Only by chance 

will a free photon collide with the cavity in the right phase with respect to the 

phase of the confined photon. Most transitions do not allow a collision. A way out 

is to assume that at a collision confined photons are exchanged with pool photons 

from Casmir’s zero-point radiation with correct momentum and correct phase re-

lation. Before pursuing this further in Sect.10, a more detailed understanding of 

the Compton Effect in the context of a photonic mass i.e. a mass that results from 

a thermal photon confined in a massless cavity must be sought. 

 

 

6. Compton collision of a free photon with a photonic mass 
 

The conservation of energy and momentum in a Compton collision (Eq.1 and 2) 

can be rewritten for a “so-called” photonic mass. The confined thermal photons 

are divided into right- and left-propagating components. Energy and momentum 

have the form: 

  

   

D
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D

n
D

nn

D
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D
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D

nn



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




2

1

222

2

1

222





,   (41) 

 

A comparison of Eq.1 with Eq.2 with Eq.41 shows that n – the number of con-

fined thermal photons – must have the value 1. Only one photon is confined at the 

initial state L2  and creates a standing wave with counter-propagating half 

waves in a phase relation π. This unit interacts with a thermal free photon. Details 

of the interaction are subject of Chap.7. 

 

 

7. Energy conservation is equivalent to momentum transfer 

between free-photon and confined-photon half waves and 

the intrinsic Doppler shift  
 

To see what happens in a collision, the left side of the averaged magnitude of 

momenta i.e., the energy conservation equation (Eq.41, n = 1) is treated as if the 

involved photons denoted in curly brackets are preparing the collision; that is, 

fictitious momentum portions denoted in square brackets are already separated to 

change the photon momentum values.       
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(42) 

          

Of course, the fictitious momentum portions denoted in square brackets add up 

to zero. They are arranged on the left as losses and on the right as a gain: 

   
D

D
DD






1

2

1
1

2

1
1    (43) 

 

By factoring out the factor (1-D), the equation gains the form of a fusion be-

tween the free photon α and the half wave “
2
1 ”of the confined photon: 

""
1

2

1

2

1
Fusion

D
     (44) 

 

Consequently the counter-propagating second half wave (second “
2
1 ” in Eq.42 

left) appears as a decay after multiplying α in Eq.44 by the Doppler factor D´: 

 

   ""
2

1

2

1
DecayDD      (45) 

 

CONCLUSION 2. In contrast to the Doppler framework (see conclusion 

1), in the energy framework the free photon enters the system it collided 

with and undergoes a fusion process with the first half-wave of the confined 

photon. This leads to a blue shift. The second half wave decays to the Dop-

pler-shifted free photon and suffers a corresponding red-shift. The decay of 

the second half wave can be regarded as an intrinsic Doppler shift which 

takes place within the photonic mass and not in the space between the col-

liding - and the laboratory system.  

 

By addition and subtraction of equations 44 and 45 and substitution of the D 

expressions by the mass – photonic mass - equivalence equations 37 and 38, equa-

tions 1 and 2 re-emerge: 
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(46) 

Of course the fusion and decay equations (Eq.44 and 45) are also solutions of 

the Compton formula, since they depend solely on D´ (see Eq.3 and 10): 

   
21

1


D       (47) 
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8. Geometric requirements during fusion and decay of a 

Compton free photon for an in-phase situation 
 

 

In Fig.7, the geometrical situation of a Compton collision for the in-phase situa-

tion as shown in Fig.6 (left graph) is sketched. Together with equations 44 and 45 

and the substitution  kkmck // 2 , where k and k
*
 are the wave vectors of 

free- and confined photons, the following geometrical process occurs:  

 

The fusion formula (Eq.44) and the energy conservation behind it suggest that 

the free photon k must penetrate into the cavity although, for confined photons the 

cavity walls are impenetrable. It “fuses” with the front half-wave k
2
1  and induces 

a blue shift to 1

2
1  Dk (see dotted line in Fig.7). At the same time, when the free 

photon enters the cavity, the second half-wave k
2
1 reflects from the rear side of 

the cavity unshifted because the wall is still at rest. Thus, this scenario differs 

from the one shown in Fig.3, in which the rear side moves with β*c and the half-

wave undergoes a Doppler red shift ( Dk
2
1 ). Therefore, to fit into a slanted cavity 

structure, the second half wave must “decay” as described in Eq.45. After the col-

lision, the cavity moves with c   and with respect to the observer at rest all pho-

tons have undergone Doppler shifts.  

 

A phase synchronization between the colliding and the confined photon in a 

Compton collision is unavoidable. The case with phase mismatch is the subject of 

Sect.10. Before this, the fusion equation (Eq.44) as understood in this Section 

leads to a number of interesting conclusions about quantum mechanical proper-

ties. 
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Fig.7: Sketch of a Compton collision of a free photon k in phase with the confined photon of a 

cavity. The confined photon k  is split into two half-waves in the framework of Eq.41. The free 

photon “fuses” with the front half-wave
k

2
1  (dotted line) and increases its momentum. The second 

half-wave (dotted line) is transported from a cavity at rest into a moving cavity. Therefore it “de-

cays” and emits the recoil photon kD´. Details are described in the text.  

 

 

 

9. Motion by stop-and-go displacement - a key for un-

derstanding quantum mechanical probability density? 

 

Let us assume that a free photon is absorbed by the cavity and not reflected 

immediately. It stays fused with the first half-wave of the confined photon.  In this 

phase, the cavity moves with a velocity c  corresponding to 





21

2
1

2


 (see 

eq.4). If for any reason the second half-wave does not decay spontaneously with 

the emission of Dk  (the decay is shown in Fig.7), its reflection stops the motion. 

Then the first half-wave reflects at the interior side of the front mirror and the pe-

riod starts again. The stop-and-go motion continues as long the free photon re-

mains absorbed. Figure 8 shows a complex Minkowski space-time presentation of 

this case for a number of reflections.  
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Fig.8: Sketch of `stop-and-go´ motion of a cavity after fusion of a free photon with the first 

half-wave of the confined photon and continuous reflections  

 

 

This concept seems to lead directly to a well-known quantum mechanical de-

scription. The recoil velocity c  can be determined using Eq.4 and the   -

equation. We have: 
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After the fusion of the free photon, the cavity moves with the velocity cv  . 

The flight time of the first half-wave to the opposite mirror is   tcLt /  and 

back to the front mirror is ./ cLt   Thus, with Eq.48 the time-averaged velocity 

c̂  of the cavity is 
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  (49) 

or re-written in physical terms: 
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   kvm ˆ       (50) 

 

which is equivalent to the well-known expression of the de Broglie relation be-

tween momentum and wavelength. The conclusion is that the average momentum 

of the photonic mass is equal to the momentum of the absorbed free photon. How-

ever the velocity of a stop-and-go cavity has a fictitious meaning since it is either 

zero or represents a Compton recoil. The same is true for its averaged magnitude 

of momentum i.e., for the kinetic energy of the photonic mass. It is also fictitious. 

It is interesting to note that the discontinuous stop-and-go motion of the cavity 

changes into a forward-backward “vibration” if the observer itself moves with the 

velocity c̂ . The advantage of this consideration is that the cavity has at each in-

stant of time a definite kinetic energy, corresponding to 2

2
12

2
1 ˆ   . It turns out, 

that under the above restriction the time-averaged kinetic energy derived from 

Eq.49 is a factor of 4 smaller than that of the Compton collision mode 

( 22

2
1 2  , see Eq.48).  

 

Now the cavity is placed into a box with infinitely deep rectangular potential 

walls with side length L. The initial state is an electromagnetic wave with the 

characteristic wavelength L2 . Using  ˆ  (see Eq.49), the time-averaged 

kinetic energy 22

2
122

2
1 ˆ cmcmEo   is: 
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    (51) 

This is exactly the well-known value of the zero-point energy per axis [16]: 

   2
22

0
2

j
m

k
E


 ,     (52) 

where j = 1 corresponds to the ground state of a particle with the mass m, which is 

confined in an area with the characteristic length L. 

After the fusion, the mass moves in the box in a stop-and-go-manner with the 

average velocity c̂ , but with a limited lifetime because of collisions with the box 

wall. In a simple approximation, the statistical lifetime is proportional to the re-

maining flight path between particle after flight reversal and wall of the box. After 

the decay, the free photon moves with the speed of light, reflects at the box wall 

and returns to the mass. In the course of this process, the mass moves back and 

forth with the fictitious velocity c̂ and tends to be present with a maximum prob-

ability around the center of the box as can be seen in Fig.9. 

 

Higher modes of the wave ( 3,2j ..) lead, because of  j  (see Sect.3.5), to 

a quadratic increase of energy in Eq.48 as well as in Eq.52. We can say: 

 

http://www.dict.cc/englisch-deutsch/probability+of+presence.html
http://www.dict.cc/englisch-deutsch/probability+of+presence.html
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CONCLUSION 3: Energy conservation suggests that photonic 

masses absorb free photons (see Sect.7). This is true for the time 

span of reflection and even for the time span of many internal re-

flections. In the latter case the de Broglie relation is valid. The par-

ticles move in a stop-and-go-mode with a time-averaged momentum 

equal to that of the absorbed free photon.  
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Fig.9: Numerical simulation of the probability of presence of a photonic mass particle in its initial 

state in a box with side length L= 1 (solid line) versus the quantum mechanical probability 

)/(sin 2 Lx (dashed line)  

 

The stop-and-go motion also yields what could be called a tramp model, be-

cause the momentum of an absorbed photon is used to move a photonic mass for a 

arbitrarily long time period with mhv /ˆ  . If the photon is emitted in the forward 

direction, the photonic mass is at rest again. In principle, this effect makes it pos-

sible to cover distances in space without energy consumption. This is in accord-

ance with energy conservation, because the potential difference between start and 

end points of motion is zero. In cases with potential differences ≠ 0, the captured 

free- as well as the confined photons change momentum in accordance with the 

energy conservation. This is subject of Section 12. 

 

 

10. Frame of fusion and decay during a phase mismatch and 

phase adaptation. Discontinuous motion 

 

The problem formulated in Sect.5 (Fig.6, left graph) deals with the possibility 

that a free photon collide a confined photon in a cavity with just the proper phase 

that is in-phase as shown in Fig.7. All other phase situations lead to mismatches of  

http://www.woerterbuch.info/deutsch-englisch/uebersetzung/in.php
http://www.woerterbuch.info/deutsch-englisch/uebersetzung/accordance.php
http://www.woerterbuch.info/deutsch-englisch/uebersetzung/with.php


 

Momentum and energy of a confined photon                                                    575 

 

 

the standing wave situation in the cavity. As mentioned above, a way to handle 

this problem is to assume that in these cases a spontaneously generated pair of 

pool photons having the same momentum and correct phase appears in the cavity 

and fuses with the incoming free photon (see Fig.10). 

In the course of this fusion, the pool photon pk (thick solid line, left hand 

with arrow) is converted into a confined one with two half-waves 

( **

2

1

2

1
kkk P  ). The second pool photon moves in the opposite direction (thick 

solid line to the right) and compensates the momentum of the escaping confined 

photon on the left k
2

1
+ k

2

1
 → Pk  (dotted line), which escapes the cavity to-

gether with its second half-wave.  

 
 

 

Fig.10: Effect of a significant phase mismatch in terms of φ during the collision of a free pho-

ton with a cavity. It requires the exchange of the confined photon (which escapes together with its 

second half-wave to the left) with a pair of pool photons, which appear with the correct phase 

(thick solid lines). The half-wave of the leftward propagating pool photon k
p
 fuses with the intrud-

ing free photon to the blue shifted half wave 
12/1  Dk . The other half-wave reflects at the rear 

cavity wall and decays afterwards into a red-shifted free photon and a red-shifted confined photon 

Dk 2/1 . The second photon k
p
 moves to the right and joins with the confined photon (which 

escapes ct / later to the left) to form a pair that changes the pool distribution (see text). 
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However, neutrality in the pool is not conserved perfectly, since there is a 

phase delay in terms of φ between the “absorption” of the pool photon (time point: 

free photon intrusion) and the emission of the phase-delayed confined photon into 

the pool ( Pkk  ). This means that while the second pool photon Pk  (thick ar-

row) moves with the correct phase in the direction of acceleration, the confined 

photon escapes with a delay of t = φ/c  in the counter-acceleration direction into 

the pool. 

A probe particle (i.e., a proton, not shown in Fig.10) behind the accelerated 

photonic mass collides with a regular pool photon moving to the right but misses 

the counter propagating pool photon moving to the left since this is absorbed by 

the photonic mass. Thus, the probe moves in the direction of acceleration until it 

is stopped by the confined photon after the delay time ctx / . This motion will 

be called discontinuous motion as a variation of the stop-and-go-mode described 

in Sect.9. Depending on the magnitude of phase mismatch the magnitude of the 

displacement ranges between 0 and mr 151087.0  (radius of the proton) and is, 

on average, ½ r. This process propagates leftward with the speed of light and is 

unlimited in time since the phase distortion is conserved. It could be mistaken for 

a force of attraction but is not really such a force. As described in Sect.9, the dis-

continuous motion of a probe mass reflects the principal property of space, which 

allows motion without energy consumption.  

Each incoming free photon triggers a discontinuous motion. It is clear that re-

flections at single particles are governed by the Thomson cross-section. All Comp-

ton photons (free photons) with a wavelength comparable to the dimension of the 

photonic mass ( 0rL  ) collide with a probability of about 1 and free photons with 

lower energy collide with a reduced probability proportional to 22
0 / r , unless a 

mirror-like conglomeration of photonic masses is larger than the wavelength. In 

this case, the probability of reflection is also 1.  
The power Pin carried by a free photon with energy /ch  that arrives within a 

time interval t  at a photonic mass is:  
t

ch
Pin





   (53) 

The probability of reflection at the photonic mass as described by Thomson re-

duces Pin to PR. Exceptions are the upper mentioned mirror-like conglomerations 

of photonic masses. If they are larger than the wavelengths of free photons then 

the factor in M
RP  remains equal to 1 (“M” stands for mirror):  

  
2

2
0



r
PP inR       1 in

M
R PP   (54) 

Even for a low-energy free photon, each reflection described by Thomson scat-

tering at a single charge or at mirror-like conglomerations triggers the delayed 

emission of a high-energy confined photon (having the momentum 0/ rch ) with the 

power of: 
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Using Eq.53 to replace the factor t  in Eq.55, we have: 
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Finally the photon flux j as well as j
M

 with the dimension: number of photons 

with momentum 0/ rhc - per area F and per second is: 
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001 r
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r
j M

2
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2
   (57) 

A probe particle (proton) with a cross-section of 2

9
or


   is exposed to this pho-

ton flux (r0 is the classical electron radius). It collides with a high-energy pool 

photon and a time φ/c later with a high-energy one moving in the opposite direc-

tion. As already mentioned, a displacement d̂  with average value of 02
1 r will take 

place during each collision with a probe particle. Therefore the expressions for the 

flux in Eq.57 will be called the displacement flux.  

The product j gives the number of collisions. It is a measure for the average 

displacement per second: 
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The average displacements per second are tiny even for strong fluxes (see 

Eq.58, right-hand formula). For instance, for visible light with a power density inP  

of 2/1 mmkW the discontinuous motion per second is far below 0r . However, with 

high power laser beams in the MW/GW-area, measurable effects can be expected, 

provided the mechanism can really be set up. 

 

It is possible that such effects can already be explored and described. A likely 

candidate is the enigmatic photophorese first described by F. Ehrenhaft [17], alt-

hough it was later interpreted as a radiometer effect [18]. 

 

Another phenomenon described by references [19, 20] gives information about 

motion effects in the vicinity of accelerated masses comparable to first order effect 

in terms of β. A displacement flux resulting from accelerated masses could be 

deduced as follows: Deviating from the concept described in Equations 53 to 58, 

we start with the scenario that mass points m in solid matter of mass M are posi-

tioned at fixed distances from each other and the coupling of an external force is 

done by hypothetical reflecting lattice photons. To first order in β, the velocity 

change Δv during the time interval c/   depends on the acceleration “A” and 

the momentum transfer of the photon reflection:  
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The wavelength is virtual, since for weak accelerations the wavelength far ex-

ceeds real lattice distances. Depending on the phase situation (see Fig.10), each 

reflection can lead to the emission of a high-energy confined photon. The resulting 

displacement flux jA is proportional to F/1 , to the number of mass points (M/m) 

in the accelerated mass and to the reciprocal reflection time c/ :  

cm

M

F
j A

/

11


       (60) 

To demonstrate the magnitude of the displacement flux, the equivalent of 

kgM 1 neutrons (with the density of water) is accelerated with 2/1 smA  . The 

wavelength of the force-coupling photons is m20 and the displacement flux in 

a square of cmxcm 1010 is 3610Aj displacements per second. A probe near the 

square with a cross-section of about 2
0r  is displaced with each collision (in the 

direction of acceleration) by 02
1 r . Let d be the sum of displacements in one 

second: 

  1036462
002

1 1010
9

  Ajrrd


    (61) 

It is true that the flux is extremely high but the Thomson cross-section reduces 

the effect considerably. Under certain circumstances such small effects can be 

measured i.e., the very low proton cross-section of approximately 23010 m can be 

increased by alignment effects of single crystals. 

 

 

11.    Inertia of a photonic mass 
 

If one applies Newton’s third axiom of inertia to a photonic mass then the fol-

lowing happens: During the reflection the free photon transfers momentum to the 

photonic mass. Simultaneously the photonic mass transfers momentum to the free 

photon of equal value and of opposite direction to the free photon. 

Let us examine this in a gedankenexperiment where photons are confined in a 

box. Via a spring a constant force shall act on the box. An observer in the system 

of the accelerated box states that photons which reflect at the side of the spring 

gain a blue shift and those reflecting at the opposite side gain a red shift (see 

Fig.3). The resulting momentum during a reflection period causes a counterforce 

against the spring. The momentum obeys Eq.36 and is equal to a photonic mass in 

motion but here it belongs to an accelerated system. If the acceleration ends the 

blue- and red shift processes have also ended. The wavelengths of the photons 

remain unchanged in comparison to the beginning of the experiment. However an  
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observer in the laboratory system measures a resulting photon momentum as de-

scribed in Eq.36. 

This behavior is also visible in Fig.7. In analogy with the accelerated box, the 

fusion process (eq.44) leads to a blue shift and the decay process leads to the red 

shift (eq.45) of the confined photon. The point is that all these processes are af-

fected by the free photon itself.  

To translate these facts into the macroscopic: If one throws away (role of free 

photon) a stone consisting of photonic masses, then combined blue and red shifts 

generate the inertial counter force which is experienced by the hand as a counter 

pressure.  

The inertia of photonic masses shows no difference with respect to ordinary 

masses. However, it could be demonstrated that colliding free photons are directly 

responsible for the inertia of a photonic mass and not reaction processes in the 

mass itself. This might be a progress in the understanding of inertia. 

 

 

12.  A photonic mass in the gravitational field 
 

It is well known that under the action of the gravitational field electromagnetic 

waves suffer wavelength shifts [21]. The momentum loss kk   of a photon is 

proportional to the strength g


 of the gravitational field and to the path s :  

   
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kk
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                       (62) 

The same is true for the confined photon in the cavity. Although it reflects back 

and forth, if it passes against the gravitation field it loses energy and momentum 

as described in Eq.62. Since the dimension of the cavity is 2
1  the cavity conse-

quently also expands. If the cavity moves into the gravitational field the situation 

is reversed [22]. To relate to Sec.9 and to the remarks on the tramp model an ab-

sorbed free photon of course undergoes the same wavelength shifts as the confined 

photon.  

Assume a photonic mass with an absorbed free photon moving with its ficti-

tious velocity against a gravitational field. The question arises what is the condi-

tion for a standstill i.e. the stop-and-go motion against the field is exactly compen-

sated by the falling distance s. The fall s


 of the photonic mass in the time interval 

cLt / is 
2

2
1 tgs


 where L is the dimension of the cavity.  We have standstill if:

     
c

L
gtgv

2

1

2

1
ˆ           (63)  

For realistic parameters such as mL 1510 and 2/10 smg  the fictitious velocity 

of the order of sm /10 20 . Using the de Broglie relation the wavelength of the ab-

sorbed free photon for this case is m1310 .  All wavelengths smaller than the stand-

still condition lead to a propagation of the photonic mass with de Broglie velocity 

against the gravitational field. The loss mechanism for the absorbed free- and con 
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fined photons with effective mass m
*
 is the decrease of their momenta described 

by the energy loss sgm
  in Eq.62. Thus, if nature allows it, aligned stop-and-go 

motions of particles with fictitious de Broglie momentum make it possible to 

overcome gravitational potentials with minimum energy consumption.  

This has to be distinguished from the so called photon rocket [23] which was 

first cited by H. Sänger [24]. The repulsion in a photon rocket is provided by the 

emission of photons. This is an extremely energetic process, since after each emis-

sion of a photon and momentum transfer its energy counts as a loss. If no poten-

tials are present the ratio energy/momentum is c while in the case of stop-and-go 

motion this ratio is zero. If gravitation potentials are present the ratio 2/ csg  is 

still low. 

 

 

 

13.  Conclusion 
 

Both, classical masses and masses consisting of confined thermal photons in a 

cavity have the same behavior with respect to momentum and kinetic energy. This 

is the essence of the mass – confined photons – equivalence equations (eq.37 and 

38). The cavity model depends on the existence of a photon pool, which compen-

sates the confined thermal photon reflection momenta at the cavity walls by in-

phase reflections. For example, the postulated photon pool can consist of the Cas-

imir zero-point radiation together with a yet to be specified thermal contribution 

(see Sect.3.4 and 14) 

Sect.2 demonstrates that momentum conservation and Doppler shift describe 

the Compton Effect of photonic masses exactly. Viewed from this perspective, the 

energy conservation seems to be unnecessary for 180°-collision processes with 

photonic masses. However it turns out that: 

 

 Energy conservation requires that for collision processes with photonic 

masses the sum of all Doppler shifts of the involved photons has to be 

zero (eq.43). This is interpreted as the fusion between the free- and the 

first half wave of the confined photon (blue shift, see eq.44). After-

wards the unshifted second half wave of the confined photon decays to 

a red shifted free- and a red shifted second half wave of the confined 

photon as it is described in eq.45  

 

 In principle the fusion-decay process of the recoil allows a separation of 

absorption and emission process. During the period of separation the 

motion of the photonic mass is consistent with the de Broglie relation 

between momentum and wavelength. However statements about mo-

tions with a fictitious velocity together with fictitious kinetic energy 

were required. 
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Collisions of free photons with photonic masses will generally suffer a phase 

mismatch between free and confined photons. This will lead to a distortion of the 

pool photon distribution with the effect that a probe mass behind the accelerated 

photonic mass experience a discontinuous motion with fictitious velocity (see 

Sect.10). 

So far, differences between the statements of Ordinary Relativity Theory [25] 

and the model presented here are evident. Ordinary Relativity predicts in third 

order of β a weak induced motion of a probe masses in the direction of accelera-

tion in the environment of accelerated masses, while a photonic mass induces an 

acceleration dependent discontinuous motion of a probe with a fictitious velocity.  

The inertia of photonic masses results from the fact that the free photon that in-

trudes into the cavity fuses with the confined photon and causes a blue and red 

shift as described in Eq.36 which indicates the inertial counterforce and reflection. 

So seen the free photon carries the counterforce into the photonic mass  

Since photons experience Doppler shifts in gravitational fields, confined pho-

tons as well as absorbed free photons change momentum as well. The conse-

quence is a field dependent spacing of the cavity mirrors. It is demonstrated that in 

principle the stop-and-go motion of particles with fictitious de Broglie velocity 

can be used to overcome gravitational potentials with minimum energy consump-

tion.  

 

 

14.  Outlook 

     

The presented model lives from an outer pressure to compensate the interior pres-

sure of the cavity (see Sect.3.4). The zero point radiation is by far not sufficient to 

provide this (a factor of 76 too small). The outer pressure can be provided by a 

dense, isotropic flux j of thermal ultralong wavelength photons ( m2510
~
 ) in the 

space as reported in ref.15. This flux causes attraction forces between charges sim-

ilar to gravitation by scattering and mutual screening. A set of parameters adapted 

to gravitation suggests that each charge is penetrated by about  
6560 1010  photons/s and the diameter of the cross section for scattering is as small 

as the Plank length.  

If one compares the expansion force of a confined thermal photon (see Eq.32) 

with the compression force generated by the flux j of ultralong wavelength 

photons given in ref.16 (p.48, point 2), we have: 
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This indicates that both models might have a common basis. This gives hope 

that a theory could be found where mass, gravitation and quantum mechanic can 

be harmonized.  
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