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Abstract

In this paper, we study some symmetric identities of q-Euler numbers
and polynomials. From these properties, we derive several identities of
q-Euler numbers and polynomials.
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1 Introduction

The Euler polynomials are defined by the generating function to be

2

et + 1
ext = eE(x)t =

∞∑
n=0

En(x)
tn

n!
, (see [2 − 6]). (1.1)

with the usual convention about replacing En(x) by En(x).

When x = 0, En = En(0) are called the Euler numbers. Let q ∈ C

with |q| < 1. For any complex number x, the q-analogue of x is defined
by [x]q = 1−qx

1−q
. Note that limq→1[x]q = x. Recently, T. Kim introduced a

q-extension of Euler polynomials as follows:

Fq(t, x) = [2]q

∞∑
n=0

(−1)nqne[n+x]qt =

∞∑
n=0

En,q(x)
tn

n!
, (see[7, 8]). (1.2)

When x = 0, En,q = En,q(0) are called the q-Euler numbers. From (1.2),
we note that

En,q(x) = (qxEq + [x]q)
n

=

n∑
l=0

(
n

l

)
qxlEl,q[x]n−l

q , (see [7, 8]),
(1.3)

with the usual convention about replacing El
q by El,q.

In [8], Kim introduced q-Euler zeta function as follows:

ζE,q(s, x) =
1

Γ(s)

∫ ∞

0

ts−1Fq(−t, x)dt

= [2]q

∞∑
n=0

(−1)nqn

[n + x]sq
,

(1.4)

where x �= 0,−1,−2, . . . , and s ∈ C.

From (1.4), we have

ζE,q(−m,x) = Em,q(x), (1.5)

where m ∈ Z≥0.
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Recently, Y. Simsek gave recurrence symmetric identities for (h, q)-Euler
polynomials and the alternating sums of powers of consecutive (h, q)-integers(see
[9]) and Y. He gave some interesting symmetric identities of Carlitz’s q-Bernoulli
numbers and polynomials(see [1]). In this paper, we study some new symme-
tries of the q-Euler numbers and polynomials, which is the answer to an open
question for the symmetric identities of Carlitz’s type q-Euler numbers and
polynomials in [5]. By using our symmetries for the q-Euler polynomials we
can obtain some identities between q-Euler numbers and polynomials.

2 Symmetric identities of q-Euler polynomials

In this section, we assume that a, b ∈ N with a ≡ 1 (mod 2) and b ≡ 1 (mod 2).
First, we observe that

1

[2]qa

ζE,qa(s, bx +
bj

a
) =

∞∑
n=0

(−1)nqna

[n + bx + bj
a
]sqa

=
∞∑

n=0

qan(−1)n[a]sq
[bj + abx + an]sq

= [a]sq

∞∑
n=0

b−1∑
i=0

(−1)i+bnqa(i+bn)

[ab(x + n) + bj + ai]sq
.

(2.1)

Thus, by (2.1), we get

[b]sq
[2]qa

a−1∑
j=0

(−1)jqbjζE,qa(s, bx +
bj

a
) = [b]sq[a]sq

a−1∑
j=0

b−1∑
i=0

∞∑
n=0

qai+bj+abn(−1)i+n+j

[ab(x + n) + bj + ai]sq
.

(2.2)

By the same method as (2.2), we get

[a]sq
[2]qb

b−1∑
j=0

(−1)jqajζE,qb(s, ax +
aj

b
)

= [a]sq[b]
s
q

b−1∑
j=0

a−1∑
i=0

∞∑
n=0

qbi+aj+abn(−1)i+n+j

[ab(x + n) + aj + bi]sq
.

(2.3)

Therefore, by (2.2) and (2.3), we obtain the following theorem.

Theorem 2.1. For a, b ∈ N with a ≡ 1 (mod 2), b ≡ 1 (mod 2),

[2]qb [b]sq

a−1∑
j=0

(−1)jqbjζE,qa(s, bx +
bj

a
) = [2]qa[a]sq

b−1∑
j=0

(−1)jqajζE,qb(s, ax +
aj

b
).
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By (1.5) and Theorem 2.1, we obtain the following theorem.

Theorem 2.2. For n ∈ Z≥0 and a, b ∈ N with a ≡ 1 (mod 2), b ≡ 1 (mod 2),
we have

[2]qb[a]nq

a−1∑
j=0

(−1)jqbjEn,qa(bx +
bj

a
) = [2]qa [b]nq

b−1∑
j=0

(−1)jqajEn,qb(ax +
aj

b
).

From (1.3), we note that

En,q(x + y) = (qx+yEq + [x + y]q)
n

= (qx+yEq + qx[y]q + [x]q)
n

= (qx(qyEq + [y]q) + [x]q)
n

=
n∑

i=0

(
n

i

)
qxi(qyEq + [y]q)

i[x]n−i
q

=

n∑
i=0

(
n

i

)
qxiEi,q(y)[x]n−i

q .

(2.4)

Therefore, by (2.4), we obtain the following proposition.

Proposition 2.3. For n ≥ 0, we have

En,q(x + y) =

n∑
i=0

(
n

i

)
qxiEi,q(y)[x]n−i

q

=

n∑
i=0

(
n

i

)
q(n−i)xEn−i,q(y)[x]iq.

Now, we observe that
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a−1∑
j=0

(−1)jqbjEn,qa(bx +
bj

a
)

=
a−1∑
j=0

(−1)jqbj
n∑

i=0

(
n

i

)
qia( bj

a
)Ei,qa(bx)

[
bj

a

]n−i

qa

=

a−1∑
j=0

(−1)jqbj

n∑
i=0

(
n

i

)
q(n−i)bjEn−i,qa(bx)

[
bj

a

]i

qa

=

n∑
i=0

(
n

i

)(
[b]q
[a]q

)i

En−i,qa(bx)

a−1∑
j=0

(−1)jqbj(n+1−i)[j]iqb

=
n∑

i=0

(
n

i

)(
[b]q
[a]q

)i

En−i,qa(bx)S∗
n,i,qb(a),

(2.5)

where S∗
n,i,q(a) =

∑a−1
j=0(−1)jq(n+1−i)j[j]iq.

From (2.5), we can derive

[2]qb [a]nq

a−1∑
j=0

(−1)jqbjEn,qa(bx +
bj

a
) = [2]qb

n∑
i=0

(
n

i

)
[a]n−i

q [b]iqEn−i,qa(bx)S∗
n,i,qb(a).

(2.6)

By the same method as (2.6), we get

[2]qa [b]nq

b−1∑
j=0

(−1)jqajEn,qb(ax +
aj

b
) = [2]qa

n∑
i=0

(
n

i

)
[b]n−i

q [a]iqEn−i,qb(ax)S∗
n,i,qa(b).

(2.7)

Therefore, by Theorem 2.2, (2.6) and (2.7), we obtain the following theorem.

Theorem 2.4. For n ∈ Z≥0 and a, b ∈ N with a ≡ 1 (mod 2), b ≡ 1 (mod 2),
we have

[2]qb

n∑
i=0

(
n

i

)
[a]n−i

q [b]iqEn−i,qa(bx)S∗
n,i,qb(a) = [2]qa

n∑
i=0

(
n

i

)
[b]n−i

q [a]iqEn−i,qb(ax)S∗
n,i,qa(b),

where S∗
n,i,q(a) =

∑a−1
j=0(−1)jq(n+1−i)j [j]iq.
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It is easy to show that

[x]qu + qx[y + m]q(u + v) = [x + y + m]q(u + v) − [x]qv. (2.8)

Thus, by (2.8), we get

e[x]qu
∞∑

m=0

qm(−1)me[y+m]qqx(u+v) = e−[x]qv
∞∑

m=0

qm(−1)mq[x+y+m]q(u+v). (2.9)

The left hand side of (2.9) multiplied by [2]q is given by

[2]qe
[x]qu

∞∑
m=0

qm(−1)me[y+m]qqx(u+v)

= e[x]qu
∞∑

n=0

qnxEn,q(y)
(u + v)n

n!

=

( ∞∑
l=0

[x]lq
ul

l!

)( ∞∑
k=0

∞∑
n=0

q(k+n)xEk+n,q(y)
uk

k!

vn

n!

)

=

∞∑
m=0

∞∑
n=0

(
m∑

k=0

(
m

k

)
q(k+n)xEk+n,q(y)[x]m−k

q

)
um

m!

vn

n!
.

(2.10)

The right hand side of (2.9) multiplied by [2]q is given by

[2]qe
−[x]qv

∞∑
m=0

(−1)mqme[x+y+m]q(u+v)

= e−[x]qv

∞∑
n=0

En,q(x + y)
(u + v)n

n!

=

( ∞∑
l=0

(−[x]q)
l

l!
vl

)( ∞∑
m=0

∞∑
k=0

Em+k,q(x + y)
um

m!

vk

k!

)

=

∞∑
n=0

∞∑
m=0

(
n∑

k=0

(
n

k

)
Em+k,q(x + y)(−[x]q)

n−k

)
um

m!

vn

n!

=

∞∑
n=0

∞∑
m=0

(
n∑

k=0

(
n

k

)
Em+k,q(x + y)q(n−k)x[−x]n−k

q

)
um

m!

vn

n!
.

(2.11)

Therefore, by (2.10) and (2.11), we get

m∑
k=0

(
m

k

)
q(n+k)xEn+k,q(y)[x]m−k

q =

n∑
k=0

(
n

k

)
q(n−k)xEm+k,q(x + y)[−x]n−k

q

(2.12)
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