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Abstract

In this paper, we study some symmetric identities of g-Euler numbers
and polynomials. From these properties, we derive several identities of
g-Euler numbers and polynomials.
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1 Introduction

The Euler polynomials are defined by the generating function to be

2
et +1

T x - tn
et = P )t:ZE”(I)a’ (see [2 — 6]). (1.1)
n=0
with the usual convention about replacing E"(z) by E,(x).

When ©z = 0, £, = E,(0) are called the Euler numbers. Let ¢ € C
with |¢|] < 1. For any complex number z, the g-analogue of z is defined
by [z], = 11%‘1;. Note that lim, ,;[z], = 2. Recently, T. Kim introduced a
g-extension of Euler polynomials as follows:

o0 o0 n

Fyft ) = 2, S (-1 et = 3 B y(o) o (seelr,8). (12)

n n=0

When z = 0, E,, = E,,(0) are called the ¢g-Euler numbers. From (1.2),
we note that

Enq(®) = (¢"Eq + []y)"

—~ (n _ 1.3
=3 () Bulely Goee [7.5), (L)
1=0
with the usual convention about replacing Efl by Ej 4.
In [8], Kim introduced ¢-Euler zeta function as follows:
(ool 2) = — /Oot51F( £ a)dt
B O
o0 1.4
- [2](1 [n i 33']5 )
n=0 q
where z #£ 0,—1,—2,...,and s € C.
From (1.4), we have
CE',q(_m7 x) = Em,q(x)> (15>

where m € Z>.
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Recently, Y. Simsek gave recurrence symmetric identities for (h, q)-Euler
polynomials and the alternating sums of powers of consecutive (h, g)-integers(see
[9]) and Y. He gave some interesting symmetric identities of Carlitz’s ¢-Bernoulli
numbers and polynomials(see [1]). In this paper, we study some new symme-
tries of the ¢-Euler numbers and polynomials, which is the answer to an open
question for the symmetric identities of Carlitz’s type ¢-Euler numbers and
polynomials in [5]. By using our symmetries for the g-Euler polynomials we
can obtain some identities between ¢-Euler numbers and polynomials.

2 Symmetric identities of ¢g-Euler polynomials

In this section, we assume that a,b € N with a =1 (mod 2) and b = 1 (mod 2).
First, we observe that

1 b] o ( 1)nqna
—(g.ga(s, br + =
2] 4 Cpae a )= Z “ [n+ bx + 25
. (2.1)
00 qan(_l)n[a]s 5 0 z+bnqa(z+bn)
_nz [bj + abx + anl} N qn ZZ b(x +n) + by + ai]s’

Thus, by (2.1), we get

[b]g a—1 b b : a-1b-1 o0 qaz—i-bj—i—abn( 1)i+n+j
b S
[Q]qa ' ( ) CEq (3 5L’+ ZZZ abx—|—n —|—b]—|—az]
j=0 j=0 =0 n70
(2.2)
By the same method as (2.2), we get
9y =y aj
(_1)](] jCE qb(sa ar + _)
[Q]Qb = ’ b
(2.3)

b—1 a—1 bi+aj+abn i+n+j
g e (—1)tm

Z lab(z +n) + aj + bil3

]:0 =0 n=0

Therefore, by (2.2) and (2.3), we obtain the following theorem.

Theorem 2.1. Fora,b € N witha=1 (mod 2), b=1 (mod 2),

a—1 . b—1

[Q]qb [b]g Z(_l)jquCE,q“(sa bx + %) = [2]4e [a]; (—1)jqajCE,qb(8, axr + %)

J=0 J

I
o
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By (1.5) and Theorem 2.1, we obtain the following theorem.

Theorem 2.2. Forn € Zso and a,b € N witha =1 (mod 2), b=1 (mod 2),
we have

2] laly ;(—1)jquEn g (bx + %‘7) = [2]a[b]] jzo(_l)jqajEn ooz + %)

From (1.3), we note that

qu(x +9) qx+yEq + [z + y]q)n

= (
= (q:v-l—yEq +q° [y]q + [x]q)n
= (¢°(¢"Eq + [ylg) + [2]9)"

=3 (§)ewrn s e 4

Therefore, by (2.4), we obtain the following proposition.

Proposition 2.3. Forn >0, we have

Now, we observe that
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where Sy, (a) = Z?;é(_l)jq(nﬂfi)j[j]é‘

From (2.5), we can derive
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By the same method as (2.6), we get

o

—1 . n

20l Y (1Y B+ 20) = e 3 (1) B0yl B 00)50),

<
I
)
-
I
=)

(2.7)
Therefore, by Theorem 2.2, (2.6) and (2.7), we obtain the following theorem.

Theorem 2.4. Forn € Zsq and a,b € N witha =1 (mod 2), b=1 (mod 2),
we have

n

~

e 3 () s 01550 = B 3 () 05

where Sff”q( a) = Z?:é( l)jq(”H*i)j[j]fl.

(b),
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It is easy to show that
[#],u + ¢"ly + m]y(u+v) =[x +y + m],(u+v) — [z],0. (2.8)
Thus, by (2.8), we get

m]qu Z (] y+m}qq (utv) _ ef[x}qv Z qm(_l)mq[:fc+y+m}q(u+v)‘ (29>
m=0

The left hand side of (2.9) multiplied by [2], is given by

e 3 (A

_e[:fcquzqnmEﬂq U+U)

n!
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The right hand side of (2.9) multiplied by [2], is given by
[2]q€—[w}qv Z( 1) gmelztytmls(utv)
m=0
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Therefore, by (2.10) and (2.11), we get

i (TZ) ¢ B ()l = i (Z) (B o+ y) [~

k=0
(2.12)
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