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Abstract

Three dimensions harmonic oscillator is one of the fundamental prob-
lems in quantum mechanics. In this research work we investigate an op-
erational treatment of three dimensions quantum harmonic oscillator.
We define lower and upper operators for three dimensions quantum har-
monic oscillator and find the energy states and wave functions.
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1 Introduction

Oscillators is one the fundamental problems in both classical mechanics and
quantum mechanics, harmonic oscillators in the former and anharmonic oscil-
lators in latter [3, 2, 1]. There are several methods in studying oscillators in
quantum mechanics. One of them is operational methods. Operational meth-
ods is useful for studying symmetries in systems. In this research work we
present an operational treatment of three dimensions harmonic oscillator.

2 Three dimensions harmonic oscillator

The time independent Schrodinger equation for three dimensions quantum
harmonic oscillator(TDQHO) in cartesian form is

Hψ(x1, x2, x3) = Eψ(x1, x2, x3) (1)

in which

H =
1

2m
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2
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and h̄
i

d
dxj

and xj are hermitian operators. In first step we investigate the energy

state of TDQHO.
If we write

E =< ψ(x1, x2, x3)|H |ψ(x1, x2, x3) >=
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We know the operators pxi
and xi are hermitian operators and then

E =
3∑

i=1

(
< pxi

ψ|pxi
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1

2
< xiψ|xiψ >

)
(4)

The < ψ|ψ > is positive value and in result the energy states of TDQHO are
positive E > 0.

2.1 Operational treatment

If we use the spherical coordinates, the radial equation of TDQHO is [3]
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We use the change of variable r2 → ρ, then
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We write the Hamiltonian of TDQHO in term of new variable as

H = − h̄2
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)
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If we define the operator

A = k − mω

h̄
ρ− 2
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in which p = h̄
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d
dρ

, and
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ρ+ 2

i

h̄
pρ (9)

We rewrite the Hamiltonian of TDQHO in terms of A and A† as

H =
h̄2

2mρ
(A† − 1)A+ (k +

3

2
)h̄ω (10)

and we can easily find

[H,A] = −2h̄ω
(
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− 3
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(11)

This result indicate A is a lower operator. For example

[H,A] = −2h̄ωA E = (k +
3

2
)h̄ω (12)

Since k ≥ 0 and from (4) we have E > 0, then this state is ground state for a
known k and we have

Hϕ0(ρ) = E0ϕ0(ρ), E0 = (k +
3

2
)h̄ω. (13)

and too

[H,A+ 2] = −2h̄ω(A+ 2) E = (2 + k +
3

2
)h̄ω (14)

As a result, A is a lower operator for ground state ϕ0(ρ), A + 2 is a lower
operator for ϕ1(ρ) and A+ 2n is a lower operator for ϕn(ρ).
In the same way

[H,A†] = 2h̄ω
(
E
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(15)

This result indicate A† is an upper operator. For example

[H,A† + 1] = 2h̄ω(A† + 1) E = (k +
3

2
)h̄ω (16)



632 H. Parsian, R. Sabzpoushan and B. Jaleh

or

[H,A† + 3] = 2h̄ω(A† + 3) E = (2 + k +
3

2
)h̄ω (17)

This means A† + 1 is an upper operator for ground state ϕ0(ρ), A
† + 3 is an

upper operator for ϕ1(ρ) and A† +2n+1 is an upper operator for state ϕn(ρ).
By using the result (15)-(17), the energy state of TDQHO will be

En = (2n+ k +
3

2
)h̄ω n = 0, 1, 2, ... (18)

2.2 Wave functions

From (12) and (13) we have Aϕ0(ρ) = 0 and

ϕ0(ρ) = c0ρ
k
2 e−
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The general form of radial wave function of TDQHO will write

ϕn+1(ρ) = cn+1

n∏
i=0

(A† + 1 + 2i)ϕ0(ρ) (21)

in which cn+1 is normalization factor. For computation the normalization
factor cn, n = 1, 2, 3, ..., we need some useful relations below:

A = f(ρ) − A† (22)

in which f(ρ) = 2 + 2k − 2mω
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ρ. We can easily find
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and too
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The last relation that we will used is
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We start from normalization factor c1

ϕ1(ρ) = c1(A
† + 1)ϕ0(ρ) (26)
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We have

1

2
< ϕ1|√ρ|ϕ1 >=

1

2
c�1c1 <

√
ρ(A† + 1)ϕ0|(A† + 1)ϕ0 > (27)

By using the relations (22) and (23)

=
1

2
c�1c1 < (1 + f(ρ) −A†)

√
ρ(1 + f(ρ) − A)ϕ0|ϕ0 >

and

=
1

2
c�1c1 < (1 + f(ρ))2√ρϕ0|ϕ0 >= 1

and by (25)

c1 =
1

2
√
k + 3

2

In the same way

ϕ2(ρ) = c2(A
† + 3)(A† + 1)ϕ0(ρ) (28)

and

1

2
< ϕ2|√ρ|ϕ2 >=

1

2
c�2c2 <

√
ρ(A† + 3)(A† + 1)ϕ0|(A† + 3)(A† + 1)ϕ0 >

=
1

2
c�2c2 < ((1 + f(ρ))(3 + f(ρ)) − 4

mω

h̄
ρ)2√ρϕ0|ϕ0 >

c�2c232(k +
3

2
)(k +

5

2
) = 1

and

c2 =
1

2
√

1
√

(k + 3
2
)

1

2
√

2
√

(k + 5
2
)

(29)

For an arbitrary radial wave function
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2.3 Orthogonality

We can verify the orthogonality of ϕn(ρ) and ϕm(ρ), for m > n

< ϕn(ρ)|√ρ|ϕm(ρ) >= cm <
√
ρϕn(ρ)|

m−1∏
i=0

(A† + 1 + 2i)ϕ0(ρ) >
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by using (24)
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A+ 2n is a lower operator for ϕn(ρ)
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3 Conclusion

In this research work we present a complete treatment of three dimensions
quantum harmonic oscillator.
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