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Abstract 
 

This research presents the fluid flow and heat transfer characteristics of 
natural convection in a two-dimensional square cavity with discrete two 
source–sink pairs on the vertical sidewalls obtained from investigating isotherms, 
streamlines, and heatlines. The arrangement of the sources and sinks are changed 
from the separated to staggered modes. A finite element method is used for 
solving the governing equations. The interested parametric are Darcy number in 
the range of 610− to 110− , Rayleigh number constant at 610 , and Prandtl number 
constant at 0.71 . The numerical solutions are calculated by using FlexPDE 6.14 
Student Version and displayed in terms of isotherms, streamlines, and heatlines. It 
is found that the heat transfer is related with the number of eddies in the enclosure. 
When the sources and sinks were split into smaller segments and arranged in a 
staggered mode, the number of eddies in the enclosure increase. 
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1 Introduction 
 
    The study of natural convection heat flows in an enclosure with discrete heat 
sources has been widely attended. This phenomenon has been applying to many 
scientific and engineering applications such as electronics cooling, food storage, 
and passive cooling of buildings. By using this approach, the hot-spot temperature 
in the enclosure will be decreased.  

This work is related to natural convection in square cavity. Earlier studies 
concentrate on this topic with one source and one sink [1]. It was found that both 
the size and location of the discrete heat source significantly influence the 
behavior of heat transfer. Recently, researches in this type of problem have been  
extended to investigate the behavior of natural convection due to multiple  
discrete source-sink pairs; for example, see [2,3]. 

For the natural convection flows in a square cavity filled with a porous 
matrix, Basak et al. [2], studied numerically using penalty finite element method 
for uniformly and non-uniformly heated bottom wall, and adiabatic top wall 
maintaining constant temperature of cold vertical walls. Darcy–Forchheimer 
model is used to simulate the momentum transfer in the porous medium. This 
study yields consistent performance over a wide range of parameters, Rayleigh 
numbers 3 6( 10 10 )Ra = − , Darcy numbers 5 3( 10 10 )Da − −= −  and Prandtl 
numbers ( 0.71 10)Pr = −  with respect to continuous and discontinuous thermal 
boundary conditions. Consequently, the complicated heat transfers in enclosures 
with multiple sources and sinks are also studied. Deng [3] introduced the concept 
of heat function and its contour lines, heatlines, are currently adopted to visualize 
the heat transport process induced by convection. From above, we found that  
many researchers study about the effects of some parameters with different 
thermal boundary conditions and different shape. They attempt to analyze fluid 
flow and heat transfer by investigate isotherms, streamlines, and heatlines. 
Furthermore, the study of heatline approach, Kaluri et al. [4], is implemented to 
visualize heat transfer and to study efficient thermal mixing of laminar natural 
convective flow in a square cavity with distributed heat sources. Four different 
cases depending upon the location of the heat sources on the walls of the cavity 
are studied. Wide range of Prandtl number ( 0.015 1000)Pr = −  is studied over a 
range of Rayleigh number 3 5( 10 10 )Ra = − . 

This research has studied the characteristic of the fundamental fluid flow and 
heat transfer for natural convection in a two-dimensional square cavity with 
discrete two source–sink pairs on the vertical sidewalls. The arrangement of the 
sources and sinks changes from the separated mode to staggered modes, i.e., first 
sources and sinks are separately located on two sidewalls, then they are alternately 
located on two sidewalls, and finally they are alternately located on one sidewall. 
Main attentions are focused on the significant effects of parameters, Darcy 
number 6 1( 10 10 )Da − −= − , Rayleigh number 6( 10 )Ra = , and Prandtl number
( 0.71)Pr =  and location of discrete source–sink pairs on the flow structure in the 
enclosures and hence overall heat transfer. 
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2 Mathematical Formulation 
 
2.1 Velocity and temperature distributions 

 
The physical model under investigation in Figure 1, is a square cavity of 

height L  with discrete two source–sink pairs on the vertical sidewalls. The heat 
sources are maintained at a constant temperature hT , higher than that of the sinks 

cT  ( )c hT T< . Other parts of the enclosures are all thermally insulated. The 
arrangement of the sources and sinks has great impact on the fluid flow structures 
in the enclosure as follows: 

Case 1. Only one eddy will be formed in the enclosure.  
Case 2. There will be two eddies in the enclosure.  
Case 3. Four eddies will be formed in the enclosure. 

 

 

 

 

 

 

 
 

       Case 1          Case 2         Case 3 
 

Figure 1.  Schematic diagram of the physical system 
 

The fluid is considered as incompressible, newtonian and the flow is 
assumed to be laminar. The governing equations for steady two-dimensional 
natural convection flow in the porous cavity using conservation of mass, 
momentum and energy can be written as:  
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,x y   the distances measured along the horizontal and vertical directions,  
,u v   the velocity components in the x  and y  directions,  
ρ    density 3( )kg m−⋅ , 
p   pressure ( )Pa , 

ν    kinematic viscosity 2 1( )m s−⋅ , 
K    permeability of the porous medium, 
g    acceleration due to gravity 2 1( )m s−⋅ , 

α   thermal diffusivity 2 1( )m s−⋅ , 

β    volume expansion coefficient ( )-1K , 
T   temperature ( )K .     
 

We set the following change of variables: 
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where 
 

,X Y  dimensionless distance along coordinate x  and y , 
,U V   dimensionless velocity components in the X  and Y  directions, 

θ   dimensionless temperature, 
P    dimensionless pressure, 
Pr   Prandtl number,  
Da   Darcy number, 
Ra   Rayleigh number.  

 

Then the governing equations (1)–(4) reduce to non-dimensional form: 
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The boundary conditions for velocities are: 
 

( ) ( ) ( ) ( ),0 ,1 0, 1, 0U X U X U Y U Y= = = = ,                                    

( ) ( ) ( ) ( ),0 ,1 0, 1, 0V X V X V Y V Y= = = = ,            (10) 
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and the boundary conditions for temperature are: 
 

1θ =   (for sources), 
0θ =   (for sinks),                    

 0
Y
θ∂
=

∂
  (for adiabatic walls).                (11) 

 

The continuity equation (Eq. (6)) has been used as a constraint due to mass 
conservation and this constraint may be used to obtain the pressure distribution. In 
order to solve Eqs. (7) and (8), we use the penalty finite element method where 
the pressure P  is eliminated by a penalty parameter γ  and the 
incompressibility criteria given by Eq. (6) (see [5]) which results in 
 

U VP
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.          (12) 

                                                                     

The continuity equation (Eq. (6)) is automatically satisfied for large values of γ . 
Typical value of γ  that yields consistent solutions is 710 ; see [4]. Using Eq. 
(12), the momentum balance equations (Eqs. (7) and (8)) reduce to 
 

2 2

2 2

U U U V U U PrU V Pr U
X Y X X Y X Y Da

γ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ = + + + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

         (13) 

 

and 
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2.2 Stream function 
 

The fluid motion is displayed by using the stream function ψ  obtained from 
velocity components U  and V . The relationships between stream function and 
velocity components for two dimensional flows [4] are  

 

U
Y
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which yield a single equation 
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The sign convention is as follows: positive sign of ψ  denotes anticlockwise 
circulation and clockwise circulation is represented by the negative sign of ψ . 
The no-slip condition is valid at all boundaries as there is no cross flow, hence the 
boundary condition for stream function is 
 

   0ψ = .                 (17) 
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2.3 Heat function 

 
The heat flow within the enclosure is displayed by using the heat function 

Π  obtained from conductive heat fluxes ,
X Y
θ θ∂ ∂⎛ ⎞− −⎜ ⎟∂ ∂⎝ ⎠

 as well as convective 

heat fluxes ( ),U Vθ θ . The heat function satisfies the steady energy balance 
equation (Eq. (9)) [7] such that 
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which yield a single equation 
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The basis of sign convention for heat function is based on the concept that heat 
flows from hot to cold surface and positive heat function corresponds to 
anti-clockwise heat flow. The boundary conditions for heat function are: 
 
 

( )cos Y
Y

π π∂Π
=

∂
 (for sources), 

0
X
∂Π

=
∂

       (for sinks), 

0Π =        (for adiabatic walls).                 (20)                                    

 
Using the above definition of the heat function, the positive sign of Π  denotes 
anti-clockwise heat flow and the clockwise heat flow is represented by the 
negative sign of Π . 
 
 
3 Results and Discussion  
 

In this results, the fluid flow, heat transfer and the procedure discussed 
previously are taken from FlexPDE 6.14 Student Version. Original graphic output 
are modified from FlexPDE 6.14 Student Version to illustrate isotherms, 
streamlines, and heatlines.  During the computations, the Prandtl number and the 
Rayleigh number are kept constant as 0.71Pr =  and 610Ra =  respectively, but 
the Darcy number is varied within the range 6 110 10Da − −= − . Different 
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(a) Case 1 

 

  

 

 

 
 

(b) Case 2 
 

 

 

 
 

(c) Case 3 

Figure 2. Isotherms (left), streamlines (center), and heatlines (right) for different 
arrangement of two source–sink pairs with 610Ra = , 0.71Pr =  and 110Da −=  

arrangements of the sources and sinks and their effects are investigated. 
Figure 2 shows the fluid flow and heat transfer characteristics and also heat 

transport with 610Ra = , 0.71Pr =  and 110Da −= . For Case 1, the sources and 
sinks are separately located on two sidewalls, and their buoyancies are thus 
composed together, which creates only one eddy in the enclosure, i.e., the fluid is 
driven upward by the sources on the left sidewall and then downward by the sinks 
on the right sidewall. Heatlines illustrate a different heat transport process and on  
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(a) Case 1 

 

 

 

 

 

 

 

 
(b) Case 2 

 

 

 

 

 

 

 

 
(c) Case 3 

 
 
Figure 3. Isotherms (left), streamlines (center), and heatlines (right) for different 
arrangement of two source–sink pairs with 610Ra = , 0.71Pr =  and 410Da −=   
 
 
the right sidewall. Heatlines illustrate a different heat transport process and 
demonstrate that more heat is transferred from the bottom source than the top 
source. For Case 2, because the sources and sinks are alternately located on two 
sidewalls, their buoyancies are decomposed into two groups, which generate two 
eddies, one anti-clockwise eddy set up by the source–sink pair in the upper region  
and another clockwise eddy in the lower region, as shown by streamlines. 
Heatlines show that the heat from the top source is channeled by the upper anti- 
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clockwise flow to the top sink on the opposite side. The heat from the bottom  
 

 
 
 
 
 
 

 
 

(a) Case 1 
 
 

 
 
 
 
 
 
 

 

(b) Case 2 
 
 
 
 
 
 
 
 
 

 
(c) Case 3 

 
Figure 4. Isotherms (left), streamlines (center), and heatlines (right) for different 
arrangement of two source–sink pairs with 610Ra = , 0.71Pr =  and 610Da −=  
 
source is transported to the bottom sink on the opposite side by the lower 
clockwise flow. It is also obvious that more heat is transported from the bottom 
source than the top source. For the sources and sinks alternately are located on the 
same sidewall in Case 3, their buoyancies are fully decomposed and therefore four 
eddies appear in the enclosure. Heatlines indicate that the heat from the top source 
is transported to only one sink along the flow direction. The heat from the bottom 
source is transported to two adjacent sinks in two directions, one towards the top  
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sink by anti-clockwise flow and the other towards the bottom sink by clockwise 
flow. 

Figure 3 shows the fluid flow and heat transfer characteristics and also heat 
transport structures by isotherms, streamlines, and heatlines for different 
arrangements of two source–sink pairs with 610Ra = , 0.71Pr =  and 

410Da −= . The numerical results are similar to previous 110Da −= . Indeed, the 
fluid is driven from the sources to the sinks, which creates one eddy in Case 1, 
two eddies in Case 2 and four eddies in Case 3, and heatlines show that more heat 
is transferred from the bottom source than the top source. Since Da  decreases, 
the intensity of fluid motion for 410Da −=  is weaker than 110Da −= . 

Figure 4 shows the fluid flow and heat transfer characteristics and also heat 
transport structures by isotherms, streamlines, and heatlines for different 
arrangement of two source–sink pairs with 610Ra = , 0.71Pr =  and 610Da −= . 
The numerical results are similar to previous 410Da −= . Indeed, the fluid is 
driven from the sources to the sinks, which creates one eddy in Case 1, two eddies 
in Case 2 and four eddies in Case 3, and heatlines show that more heat is 
transferred from the bottom source than the top source. Since Da  is very low, 
the distribution of heatlines is less than former result. 
 
 
4 Conclusion 
 

The objective of the present investigation is to study the problem of the 
fundamental fluid flow and heat transfer for natural convection in a 
two-dimensional square cavity with discrete two source–sink pairs on the vertical 
sidewalls. The arrangement of the sources and sinks changes from the separated 
modes to staggered modes. Discrete sources and sinks of the heat transfer in 
enclosures can be increased by splitting the sources and sinks into smaller 
segments and then place them alternately on the same sidewall in order to create 
the largest number of eddies in the enclosure. However the optimal design needs 
further investigation. 
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