
 

 

Adv. Studies Theor. Phys., Vol. 5, 2011, no. 14, 665 - 701 
 
 
 

On the Mathematical Structure for Discrete and  
 

Continuous Metric Point Sets 
 

John F. Moxnes 

 

Department for Protection 

Norwegian Defence Research Establishment 

P.O. Box 25, N-2027 Kjeller, Norway 

john-f.moxnes@ffi.no 

 

Kjell Hausken 

 

Faculty of Social Sciences 

University of Stavanger 

N-4036 Stavanger, Norway 

kjell.hausken@uis.no 

 

Abstract 

 

We have studied fundamental properties of continuous and discrete metric point 

sets. Our focus is pure geometrical objects. We show how geodesic lines and 

angles can be constructed from an imposed metric even in discrete spaces. Lines 

in discrete and continuous metric point sets are constructed and compared with 

Euclid’s five axioms. The angle between two lines is defined. Euclid’s axioms E1 

and E2 are sufficient to achieve local angles and to define an infinite space. Axiom 

E3 is sufficient to define a space with more than one dimension. Axiom E4 is  
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sufficient to define a homogenous space. Axiom E5 is sufficient to define a flat 

space. We study how the concepts of vector spaces could appear from the metric 

point set. We have constructed arrows from each point in the metric point set. These 

arrows can be conceived as lines with a direction. The sum of arrows from each point 

is constructed algebraically without parallel transport. A method is presented for 

constructing coordinates. We have constructed coordinates in a metric point space 

by assuming that the arrow from a specific point o in the metric point space defines a 

vector space at each point p. We comment on the force concept. Different parallel 

transports are constructed geometrically. The concepts of tensors and tensor fields 

are briefly addressed. 

 

Keyworlds: Point set, Discrete Point Space, Continuous Point spaces, Euclidean 

Point Space, Metric space, Vector space, Geodesic lines, Parallel transport, Auto 

parallels 

 

1 Introduction 
 

During years there has been increasingly interest in getting away from the 

classical concept of differential manifold as the arena in which physics takes place 

(Ambarzumian and Iwanenko 1930, Rurark 1931, Snyder 1947, Finkelstien 1969, 

Feynman 1982, Minski 1982,Yamamota 1984, Bombelli et al. 1987, t’Hooft 

1990). This is in particular motivated by considerations about space-time 

structures at very small length scales and quantum gravity. A suspicion is that a 

fully satisfactory cure for the ultraviolet divergences of relativistic quantum field 

theory will eventually require some form of discrete space-time (Weingarten 

1977, Jourjine 1987). Replacing a continuum field theory by a lattice theory is 

thus considered to be the most important non perturbative regularization of the 

quantum field theory. One may even speculate about the possibility to relate the 

deformation parameters of differential calculus to the Planck length (Dimakis et  
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al. 1993). Pseudo- Riemannian geometry on finite and discrete sets has been 

developed (Regge 1961, Williams and Tuckey 1992).  

 

Noncommutative geometry is the geometry of quantum space, which are 

generalized discrete spaces replacing classical quantum spaces (Woronowicz 

1987, Connes 1994). The basic structure underlying noncommuative geometry is 

a differential calculus on an associative but not commutative algebra (Connes 

1994 and references therein). Within the framework of noncommutative 

geometry, an analog of (pseudo-) Riemannian geometry on finite and discrete sets 

has been developed (Dimakis et al. (1992, 1993,1994,1995,1999), David 1992, 

Ambjørn 1994). In one formulation functions and differentials satisfy 

noncommutative relations depending on the lattice spacing. For vanishing lattice 

spacing they commute and one recovers the ordinary differential calculus. In 

another formulation Dimakis and Müller-Hoissen established a transformation of 

the noncommutative calculus of stochastic differential (Ito) into a 

noncommutative differential calculus1. The new differential operator d* does not 

have the properties of an exterior derivative (like the d in the calculus of 

differential forms on a manifold). Notice that essential in stochastic theories is 

how randomness is accounted for (Moxnes and Hausken 2010). In a noise 

formulation, noise could be Gaussian or more general, and it could be 

uncorrelated (white noise) or correlated (colored noise). A simple realization 

could be to let the state value at each time to be a random noise or alternatively a 

deterministic function of time added a random noise as typical in Markov (1906) 

process in discrete time and space. For Markov (1906) processes, the state value 

of t tX +Δ  at time t+ tΔ  is given by the state value at time t, plus a state value of a 

“random variable” at time t. When time step approaches zero Ito calculus can be 

used. However, a system with uncorrelated noise is usually just conceived a 

coarse-grained version of a more fundamental microscopic model with 

correlation. Thus in the Stratonovich (1966) method  
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noise is incorporated in a deterministic equation by adding a deterministic noise 

term that can be integrated in the normal Riemann sense2. The Stratonovich 

integral simply occurs as the limit of time correlated noise when the correlation 

time of the noise term approaches zero. Depending on the problem in 

consideration, the Stratonovich (deterministic noise) or the Ito model (stochastic 

noise) could be appropriate approximations. Indeed, for additive noise the Ito 

model gives the same answer as the Stratonovich model if the Stratonovich model 

uses a Gaussian distribution for the noise. But for multiplicative noise the results 

are different. (For a recent treatment of different interpretations of stochastic 

differential equations see for example Lau and Lubensky (2007).) Roughly, the 

reason for this difference is that the Stratonovich integral, which is a Riemann 

integral, applies on functions with bounded variations. The Ito integral applies on 

functions without bounded variations (i.e. white noise). However, if discrete time 

and space is true, time discrete Markov models on lattices would be an interesting 

approach, where the continues limit (Ito calculus) is only an approximation. 

 

One can take the point in view that some form of differential calculus is the very 

basic structure necessary to formulate physical theories, and in particular 

dynamics of fields on space. It allows that introduction of further geometric 

notions like linear connections and the formulation of field theories and dynamics 

on finite sets (Bresser et al. 1996, Cho and Park 1997). Thus, the hypothesis of a 

physical theory (i.e. lattice theory) must be expressed in terms of the most 

primitive concepts, e.g. those of space and time. The notation of the distance 

between two points of a space is at the origin of geometry and physics. However, 

the classical Euclidean distance between two points p and q is defined by the 

infinum of length paths from p to q on a Riemannian manifold. The infinum of  

                                                                                                                                                               
1 See Baehr et al for a systematic investigation of differential of associative algebraes. 
2 Allowing randomness in the initial values e.g. for prices and for a deterministic noise commonly 
implies more realistic models of physical situations than e.g. the Liouville process where a 
realization of the stochastic process is constructed deterministically allowing randomness only in 
the initial conditions of the prices.  
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length paths is calculated as extreme of the square root of g dx dxμ ν
μν  along paths 

from p to q. However this concept has to be reformulated (Connes 1994). 

 

In the discrete theory the metric function is based on a correspondence between 

first order differential calculi and digraphs (the vertices of the latter are given by 

the elements of the finite set). Arrows originating from a vertex span its tangent 

space. Dimakis and Müller-Hoissen (1999) defined a metric as an element of the 

left-linear tensor product of the space of 1-forms with itself. In general, it is found 

that on a finite set, there is a counterpart of the continuum metric tensor with a 

geometric interpretation. In particular, in the case of the differential calculus on a 

finite set, the Euclidean geometry of polyhedra is recovered from conditions of 

metric compatibility and vanishing torsion. In the geometry on finite and discrete 

sets the Ricci tensor or a curvature scalar does not exists. But one can make use of 

the parallel transport associated with a connection. 

 

Our main objective in this article is to make available a short but sufficiently 

precise article for an in depth exposure to discrete and continuous spaces, to the 

vectors, forces and parallel transport when focusing on the geometrical aspects. 

Traditionally these concepts are in mathematical physics either emphasized by 

problem solving techniques or by much more formal mathematical structure 

theories (Freedman et al. 1990, Hirsch 1997, Sklar 1977, Jürgen 2008). Special 

attention for reference is on the discrete and on the (continuum) Euclidean point 

spaces (typically tangent spaces). (See Vaillanta et al. for statistics on 

diffeomorphisms via tangent space representations.) 

 

For historical interest we compare with the familiar Euclidean postulates for 

Euclidean point space. We construct vectors from a purely geometrical point of 

view. Although the Euclidean point space concerns old and well developed  
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mathematical objects, an appropriate discrete geometry requires a much more 

precise formulation of geometrical concepts than what is currently available in the 

literature. This paper develops such a formulation. A first step was provided by 

Dimakis et al. (1993) who formulated a common mathematical framework for 

coordinates that includes both continuum and lattice theory. As we will see in this 

article, this is not so much a surprise since most of the fundamental objects in a 

geometrical continuum theory can be easily translated or applied to the lattice 

theory.  

 

2 The metric point set (space) and the Euclidean postulates 
 

We start with the most basic concept, a point set (Lee 2003). This point set is 

simply defined as a non-empty set X  of elements which we call points. Points in 

the set are called p, i.e. { }
def mod

X p Ø= ≠ , where “def” means definition and “mod” 

means model assumption. The association between the mathematical concept 

(points) and the real world (places) is assumed to be  

 

p place in the real world→  (2.1) 

 

Using this connection a point in the mathematical theory is associated to a place 

in the real world; our place of living. The set of all places in the world is the 

associated point set X . Note that we have not defined any coordinate system. 

However, we assume that places in the world can be identified. Places in the real 

world are identified by the positions of physical point objects which we name. For 

instance the sun, the moon, etc. could be the name of places. Thereby a frame of 

reference is given. Relation (2.1) applies both for continuous and discrete point 

sets. 

 

Next the point set is “equipped” with a so-called metric function that takes two  
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arbitrary points and gives a real number as output (Royden 1968). This function 

we name D for distance, and we write mathematically: :D XxX R→ . The 

measuring device could be a length stick, a strong line, a laser and a clock etc. To 

read: D is a function that applies two points in a point set and the output is a real 

number. This real number is called the distance “between” the two points. Note 

that D is a defined to be a function. Thus between two points we have only one 

distance. The association to the real world is given by 

 

( )D the measured distance between two arbitray points places→  (2.2) 

 

A metric function (a metric for short) has some familiar generic properties that 

can be precisely stated (Royden 1968): 

 

( , ) 0, ( ), ( , ) 0 , ( ), ( , ) ( , ), ( ), ( , ) ( , ) ( , ), ( )
, ,

D p q a D p q p q b D p q D q p c D p q D p r D r q d
p q r X

≥ = ⇔ = = ≤ +
∀ ∈
 (2.3) 

a) states that the distance between two arbitrary points p and q is larger than or 

equal to zero. b) states that the distance between two arbitrary point p and q is 

zero if and only if the two points are the same. c) states that the distance between 

two arbitrary points p and q is equal to the distance between q and p. d) states that 

the distance between two arbitrary points p and q is smaller than or equal to the 

distance between p and r plus the distance between r and q. The point set X  with 

its distance function D is now called a metric point set (or space) (we call it M for 

short). The metric point set could be discrete or continuous. 

 

From now on we apply constructions. The objective is to apply constructions 

without any new physical “devices”. Our only device is the distance function D 

that in the physical world is a physical object that can be used to measure 

distance.  

We define a geodesic line (line for short). Two points p and q are assumed to be  
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sufficient to describe a line. The line function l takes two points p and q in M and 

the output is a subset of M (the line “between” p and q). : ( )l MxM P M→ .3 The 

function is defined as 

 

( , ) { ( , ) ( , ) ( , )}, , , ,
def

l p q r M D p r D r q D p q p q r M= ∈ + = ∀ ∈�  (2.4) 

 

Thus the line between p and q is a set of points ( r M∈ ). These points have the 

property that the distance from p to r, plus the distance from r to q is equal to the 

distance from p to q. It is easily observed that l(p,q)=l(q,p). For an arbitrary point 

r on the line l(p,q) it follows that 

( , ) ( , ) ( , ) ( , ) ( , ) ( , )D p r D r q D p q D q p D q r D r p+ = ⇒ = + . Thus r is also on the 

line l(q,p) and vice versa. It also follows that the line between two points p and q 

is the shortest possible line. Assume that a point r is “between” p and q. Hence 

( , ) ( , ) ( , )D p r D r q D p q+ ≥  according to (2.3d). A line has no direction. The line 

definition applies for continuous and discrete point sets. Thus lines are feasible 

even for a discrete metric point sets. 

 

So far all the concepts apply for discrete and continuous sets. However, in what 

follows it is of interest to compare directly discrete sets with the Euclidean axioms 

of (continuous) space (geometry). Euclid’s first axiom says that (Lindsay and 

Margenau 1957): E1: It is possible to draw a geodesic line joining any two points. 

The important word here is “joining”. Our interpretation of this prosaic statement 

is that the metric point set is dense, i.e., “there are no “holes” between arbitrary 

points p and q. That means a continuum. To define this we will first introduce a 

concept called a shortening of a line. To shorten a line means to remove points 

from the points of a line. However, since l(p,q)= l(q,p) this has to be defined 

properly. During shortening we let ( , ) ( , )
p

l p r l p qλ= � be the line from p to r  

                                                           
3 P(M) means power of M and is the set that consists of all subsets of M 
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achieved by starting with the larger line l(p,q) and cutting it off at point r. This 

gives one line l(p,r) that is preserved, and one line l(r,q) that is removed. l(p,r) is 

obtained by multiplying l(p,q) with the real number (factor)λ . We will apply the 

nomenclature ( , )
p

l p qλ � , where λ  is less than or equal to 1 but larger than or 

equal to zero. We define  

 

0 1 , , ,

( , ) ( , ) ( , ) ( , ) ( , ), ( , ) ( , ), ( )
pmod mod

R p q M

r M D p r D r q D p q D p r D p q l p r l p q a

λ

λ λ

≤ ≤ ∈ ∀ ∈

∃ ∈ + = ∧ = =� �

 (2.5) 

The line is thus shortened from l(p,q) to l(r,q) by cutting at point r, achieved by 

multiplying with λ . Thus we lose the point q in the new line l(p,r), and we lose 

all points in the removed line l(r,q) except point r. Notice that 0 ( , )
p

l p q p=� . 

Notice that even for a discrete point sets is line shortening possible, although not 

every λ  can be used for shortening. However, the argument of E1 is that all such 

shortening lines, assuming 0 1λ≤ ≤ , exist as lines, to read 

 

0 1 , , ,

( , ) ( , ), ( , ) ( , ), ( 1: )
pmod

R p q M

r M D p r D p q l p q l p r E Continuous

λ

λ λ

∀ ≤ ≤ ∈ ∀ ∈

∃ ∈ = ∃ =� �  (2.6) 

which is a mathematical statement of the Euclidean postulate E1, applicable only for 

continuous metric points sets. E1 does not apply for discrete metric points sets 

since not every λ  is possible in a discrete metric point set. Thus a line in a 

discrete metric point set can only be cut for numerable specific λ  values, that 

means at discrete points r. 

 

Euclid’s second axiom says that: E2: A terminated geodesic line may be extended 

without limit in either direction. Our interpretation is that the metric point set is  
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infinite. We first define a new concept, the extension of a line, quite analogous to 

the shortening concept. We define the line given by the extension of l(p,q) from q 

to the point r with the factor 1λ ≥  as ( , ) ( , )
p

l p r l p qλ= � . Thus we use the same 

nomenclature as when shortening. The mathematical definition is 

 

1 , , ,

( , ) ( , ) ( , ) ( , ) ( , ), ( , ) ( , ) ,
pmod mod

R p q M

r M D p q D q r D p r D p r D p q l p r l p q

λ

λ λ

≥ ∈ ∀ ∈

∃ ∈ + = ∧ = =� �  (2.7) 

Euclid’s second axiom states that all such extensions in (2.7) should exist. 

However, a discrete metric point set could be infinite also. To model a discrete 

metric point set we define that for every 1λ ≥  there is a point r on the extension 

of l(p,q) to l(p,r) that has a distance D(p,r) from p to r which is λ  times larger 

than the distance D(p,q) from p to q, to read both for continuous and discrete 

spaces 

 

1 , , ,

( , ) ' ( , ), ' ( , ) ( , ), ' , ' ( 2)
p

R p q M

r M D p r D p q l p q l p r R E

λ

λ λ λ λ λ

∀ ≥ ∈ ∀ ∈

∃ ∈ = ∃ = ∈ ≥� �  (2.8) 

For the continuous metric point set we state that 'λ λ=  as E2. The equation 

'λ λ=  does not hold for the discrete space since not all extensions are possible. 

The distance function is one-valued by definition. That is, given two points of the 

metric space there exists only one distance between the points. Thus using the 

familiar spherical surface as our metric point set (without the south pole) (2.8) 

will not hold, since for every surface of a sphere we can find a numerical λ  value, 

without being able to find two points in the metric point space (i.e. the sphere 

surface) which have a larger distance than λ . To illustrate, all great circle arcs 

between antipodal points on a sphere with radius r have the same length, i.e. half 

the circumference of the circle, or πr, which is the maximum possible distance  
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between two points on the sphere. Since λ  is easily chosen to yield a larger 

distance than πr, (2.8) does not hold. (We are due to the uniqueness of the 

distance function not allowed to “move around the sphere” when measuring the 

distance.) 

 

We can also define multiplication of the line l(p,q) with a negative scalar or zero, 

to read 

 

( )

0 , , ,

( , ) 1 ( , ) ( , ) ,
p def q

R p q M

l p q l q p l q p p

λ

λ λ

∀ ≤ ∈ ∀ ∈

= + − ∪� �
 (2.9) 

 

By “-l(q,p)” we mean that the points in l(q,p) is not in the set. Equation (2.9) 

applies for all Rλ ∈  if we use E1 and E2.  

 

Euclid’s third axiom says that: E3: It is possible to draw a circle with a given 

center and through a given point. This axiom is tricky since a circle is not 

defined. However, a sphere could be defined as a set of points with the same 

distance to a point p. Our minimal interpretation of this postulate is that the metric 

point space has more than one dimension4. We write that 

 

, , , ( , ) ( , ) ( 3)
mod mod

p q M and R r M D p r r l p q Eλ λ∀ ∈ ∀ ∈ ∃ ∈ = ∧ ∉�  (2.10) 

 

Euclid’s fourth axiom says that: E4: All right angles are equal. Our interpretation 

is that the metric point set is homogeneous and isotropic. We first define the angle 

between lines and finally right angles. The angle between lines is indeed not 

straightforward to define for discrete metric point sets. We start with continuous 

metric point set. Let l(p,q) and l(p,r) be two lines with a common point p. First we  

                                                           
4 There are many definitions that can be used to define the dimension of the set ξ , e.g. covering 
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define the ratio F between two lines. Let l(p,r’) be the line ( , ),0 1
p

l p rλ λ⋅ < ≤ . 

For each λ , let z’ be the point on the line l(p,q) or on the shortening of l(p,q) or 

on the extension l(q,p) with the shortest distance D(z’,r’). If z’ is on the 

shortening or on the extension of l(p,q) the ratio F is defined by 

 

( , ), ( , )
( , ), ( , ) ( ), ( ', ') , ( , ') / ( , ')

def

p
l p q l p r

l p q l p r P M D r z minimum F D p z D p r
λ ⋅

∀ ∈ = =  (2.11) 

 

The angle is then defined by  

 

( , ), ( , ) 0
( , ), ( , )

( , ), ( , ) ( ),

l p q l p r p
l p q l p r

l p q l p r P M

ArcCos Lim Fλ
λ

θ →
⋅

∀ ∈

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

 (2.12a) 

 

Thus the angle is the inverse Cosine of the limit of the ratio when the shortening 

factor λ approaches zero. However, if z’ is on the extension l(q,p), the ratio and 

the angle becomes 

 

( , ), ( , )

( , ), ( , ) 0
( , ), ( , )

( , ), ( , ) ( ),

( , ') / ( , '),
def

l p q l p r

l p q l p r p
l p q l p r

l p q l p r P M

F D p z D p r

ArcCos Lim F

θ

λ
λ

θ →
⋅

∀ ∈

= −

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

 (2.12b) 

 

For some cases of metric point sets, referred to as flat metric point sets, the ration 

F becomes the same for all finite λ  values. However, the same ratio as a 

definition of flat space will not be used in this article.  

                                                                                                                                                               
dimension and inductive dimension (Kuratowski 1961, Engelking 1978). 
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For a discrete metric points set the definitions in (2.12a) and (2.12b) do not apply 

since the limiting procedure 0λ →  is not possible. However, two lines that cross 

in discrete metric point set have a common point (crossing point). We choose the 

nearest discretely located neighboring point to the crossing point along each line 

and define the angle as a purely algebraic relation following from the distance 

between the three points in the triangle. Assume that the lines A, B and C 

constitute the triangle with the length A, B and C. A and B cross, and the angle 

between A and B is α . The angle between A and B is then simply defined by  

 

( ) ( ) ( )2 2 2 / 2
def

Cos A B C A Bα = + − . (2.12c) 

 

Next we define right angles. Choose a point r on the line l(p,q). We define pqH  as 

the set of points which all have the same distance to the two endpoints p and q of 

the line l(p,q), i.e. 

 

{ }' ( ', ) ( , ), ( ', ) ( , )
def

pqH r M D r p D r p D r q D r q= ∈ = =�  (2.13) 

 

Define l(r,r’) as the line from r on the line l(p,q), to the point r’ in pqH  not on the 

line l(p,q), i.e. ' , ' , ,pqr H r r p q∈ ≠ . The definition is that the angle between l(r,q) 

and l(r,r’) is the same and is a right angle (and equals / 2π ). Hence according to 

Euclid’s fourth axiom we get 

 

( , ), ( , ')

( , ), ,

' , ' , , , . / 2, ( 4)

pq

mod
pq l r q l r r

r l p q r H

r H r r p q const Eθ π

∈ ∈

∀ ∈ ≠ = =
 (2.14) 

 

For discrete metric point sets we can also apply (2.14) when using the definition 

of angle in (2.12c) that is applicable for discrete metric point sets. 
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Finally, Euclid’s fifth axiom says that: E5: If two geodesic lines in a plane meet 

another geodesic line in the plane so that the sum of the interior angles on the 

same side of the latter geodesic line is less than two right angles, the two geodesic 

lines will meet on that side of the latter geodesic line. There are quite many 

different versions of this axiom. Euclid intends to state that the space is flat. We 

stated after (2.12b) that a metric point set may be defined as flat if all fractions F 

between two lines in (2.11) and (2.12ab) are equal when shortening. This 

definition applies for discrete metric point sets also. However, another suggestion 

for continuous metric point sets is as follows. Assume the line l(p,q). We define 

the set pqB around the point r on l(p,q), where r is defined in (2.15a), i.e.  

 

{ }
( , ), , ( )

' ( ', ) ( , ) , ( )
pq

pq

r l p q r H a

B r M D r r D r p b

∈ ∈

= ∈ =�
 (2.15) 

 

Then let ( ', ), ( ', )l r p l r qθ  be the angle between the line l(r’,p) and l(r’,q). We thus 

postulate that all such angles are / 2π , to read 

 

( ', ), ( ', ), , ' , / 2, ( 5)
mod

pq l r p l r qp q M r B Eθ π∀ ∈ ∀ ∈ =  (2.16) 

 

Equation (2.16) the becomes the mathematical statement of Euclid’s 5 th axiom. 

Finally we will define a special subset of the metric point set. Assume that two lines 

l(p,q) and l(p,r) are given. Define next the line l(q,r) and its extension in both 

directions. Construct then all the lines through p and through a point l(q,r) and its of 

the extensiona. The union of all such lines is a subset of M which we call 

( , ), ( , )l p q l p rM , where ( , ), ( , )l p q l p rM M⊂ . 

 

Summarizing: We have constructed lines in discrete and continuous metric point sets 

and compared with Euclid’s five axioms. Of importance is the ability to define  
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the angle between two lines. We only need Euclid’s axioms E1 and E2 to achieve 

local angles and to define an infinite space. We need axiom E3 to define a space with 

more than one dimension. We need axiom E4 to define a homogenous space. We 

need axiom E5 to define a flat space. 

 

3 The arrows  
 

In section 2 we defined angles between lines and we defined a shortening and 

extension process of lines. In this section we apply that lines can be extended and 

shortened.  

 

We define arrows from a point p. The arrow given by p and q is defined as 

: ( )a MxM PP M→
r  

 

( , ) {{ }, ( , )}
def

a p q p l p q=
r

 (3.1) 

 

An arrow from p to q consists in some sense of a line with a direction. We set that 

( , ) {{ }, ( , )} {{ }, }
def

pa p p p l p p p p ω= = =
rr . Observe that an arrow ( , ) ( )a p q P M∉

r . 

The arrow set consists of all arrows { }
def

A a=
r . Notice that the definition applies 

both for discrete and continuous metric point sets. 

 

The arrow set { }A a=
r  is equipped with a function that takes any arrow and 

multiplies it with a scalar. Call this function ( ) :mu for short RxA A⋅ → . The 

definition is  

( , ) {{ }, ( , )}
pmod

R a p q p l p qλ λ λ∈ ⋅ = ⋅
r

�  (3.2) 

 

Thus we closely follow the procedure outlined during shortening and extension of  
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a line. All Rλ ∈  are feasible for continuous metric point sets, while for discrete 

metric points sets all Rλ ∈  are not feasible. More specifically, for discrete metric 

point sets we could have 0Qλ∈ , the set of all rational numbers including zero. 

 

The arrow set is also equipped with a product function that takes two arrows 

starting at the same point and multiplies them, where (" " ) :pr for short AxA R⋅ → . 

The construction is as follows both for discrete and continuous point sets (“inner 

product”). 

 

( )

( ) ( ) ( )

( ) ( ) ( )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

1/ 2

( , ) ( , ) ( , ) ( , ) , , ( )

( , ) , ( , ), ( )

( , ) ( , ) ( , ) , , ( )

( , ) , 0, ( )

def def

a p q a p r a p q a p r l p q l p r

def def

p p p

def

def

p

a p q a p r D p q D p r Cos a

a p q a p p b

L a p q a p q a p q D p q c

L a p p L D p p d

θ θ θ

ω ω ω

ω

⋅ = =

⋅ = =

= ⋅ =

= = =

r r r r
r r

r r rr r

r r r

rr

 (3.3) 

 

Notice that the angle between arrows is defined to be equal to the angle between 

lines defined in (2.10). Also observe that ( )2( , ) ( , ) ,a p q a p q D p q⋅ =
r r . The length 

of an arrow is defined by ( ) ( ) ( )1/ 2( , ) ( , ) ( , ) ,
def

L a p q a p q a p q D p q= ⋅ =
r r r . 

 

Finally, we define the sum of two arrows from the same point p. To define the 

sum of two arrows is challenging. Notice that the sum of two lines was not 

defined. We assume that the sum of two arrows from a point is again an arrow 

from the same point. Let us define ( , ), ( , )a p q a p rθ r r  as the angle between the arrows 

( , )a p qr  and ( , )a p rr . The sum (+ for short) : AxA-> A of ( , )a p qr  and ( , )a p rr  is 

then defined purely algebraically as 
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( )

( )

( , ) ( , )

2 2
( , ), ( , )

2 2 2

( , '), ( , )

( , ) ( , ) ( , '), ' , ( )

( , ') ( , ) ( , ) 2 ( , ) ( , ) , ( )

( , ) ( , ') ( , ) , ( )
2 ( , ') ( , )

( , ) ( , )

l p q l p r

def

a p q a p r

def

a p r a p r

def

p p

a p q a p r a p r r M a

D p r D p q D p r D p q D p r Cos b

D p q D p r D p rCos c
D p r D p r

a p q a p q

θ

θ

ω ω

+ = ∈

= + +

+ −
=

+ = +

r r

r r

r r r

r rr r ( , ), ( )
def

a p q d=
r

 (3.4) 

 

Equation (3.4a) says that the endpoint of a summed arrow is in the subset spanned 

by the two lines l(p,q) and (p,r). Equation (3.4b) gives the length of the summed 

arrow. Equation (3.4c) gives the direction of the summed arrow. Observe that the 

construction of the sum does not need any parallel transport. However, the length 

and direction of the summed arrow is as if the summed arrows should have been 

constructed geometrically in the familiar way learned at school. However, this is 

not performed, or even possible to perform in general since we are not yet allowed 

to “move” arrows as in the parallel transport. Indeed, the parallel transport is not 

defined yet. In general arrows are not vectors, but they can be, as shown and 

defined in Appendix B. 

 

Summarizing: We have constructed arrows from each point in the metric point set. 

These arrows can be conceived as lines with a direction. The sum of arrows from 

each point is constructed algebraically without parallel transport. 

  

4 The coordinates 
 

In this section our focus is the coordinates of the metric point set M. We confine 

attention to those metric point sets where arrows from a point p have a property 

that is not general. Indeed, we assume that the metric point set has some very 

special property, i.e. an arrow is a vector as defined in appendix B. Hence  
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{ }( , ) ,pV a p q q M= ∀ ∈
r  at the point p5.  

 

Let us choose an origin of M, i.e. a specific point p of M called o. We assume that 

all the arrows from an arbitrary point p define a vector space at o. For the vector 

space oV (called tangential space at oV ) we assume that an orthonormal basis 

{ ( )}ie o  exists, i.e. every arrow in oV  can be written 

1
( , ) ( , ) ( )

( , ) , ( , ) , ( ) , ( ) ( ) , 1,.. , 1,..

n

i i
i

o i i o i j ij

a o q o q e o

a o q V o q R e o V e o e o i n j n

α

α δ
=

=

∀ ∈ ∈ ∈ ⇒ ⋅ = = =

∑r r

r r r r
 (4.1) 

 

Observe that for a specifically chosen origin o, the functions ( , )i o qα  are functions 

of the type M R→ . Let 1ar and 2ar  denote two arbitrary arrows at the point o with 

components 1iα  and 2iα  relative to the given basis set. The length of the arrow 

(vector) is ( )1/ 2
1 1 1( )

def
L a a a= ⋅
r r r , to read 

 

( )1/ 2 2 1/ 2 2
1 1 1 1 2 2 2 2

1 1

2
1 2 1 2 1 2

1

( ) , ( ) ( )

( , ) ( ( 1) ) ( )

n ndef def

i i
i i

ndef

i i
i

L a a a L a a a

d a a L a a

α α

α α

= =

=

= ⋅ = = ⋅ =

= + − ⋅ = −

∑ ∑

∑

r r r r r r

r r r r
 (4.2) 

In order to construct the coordinates the following procedure is used. Define 

functions (coordinates) : , 1,..iK M R i n→ =  by 

 

( ) ( , ), 1.. ,
def

i iK q o q i n q Mα= = ∀ ∈  (4.3) 

 

where iα  is the component of the arrow ( , )a o qr according to an orthonormal  

                                                           
5 Since the vector space is equipped with and inner product, i.e., we have an inner product space. 
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basis. We call ( )iK q  the coordinates of M relatively to the basis and the reference 

point o. Observe that the coordinates depend on the basis and the point o. 

 

Theorem 1: 

 
2( , ) ( ) ,i

i
D o q K q q M= ∀ ∈∑  (4.4) 

Proof: It follows from the definition of the arrow and the definition of length that 

( )1/ 2 2 1/ 2 2 1/ 2

1 1
( , ) ( ( , )) ( , ) ( , ) ( ( ( ) ) ( ( ( ) )i i

i i
D o q L a o q a o q a o q q K qα

= =
= = ⋅ = =∑ ∑r r r  

Qed. 

 

Summarizing: We have constructed coordinates in a metric point space by assuming 

that the arrow from a specific point o in the metric point space defines a vector space 

at each point p. 

 

5 The force 
 

The literature reports no measuring device that measures force in all physical 

applications. We have accordingly conceived only one experimental device, i.e. a 

length measuring device. However, the lack of identification of a measuring 

device that measures force does not mean that such a device is impossible to find 

in the future. Hence in this section we hypothetically assume an additional 

measuring device that measures force. The force we conceive has a direction in 

the metric point space M, and has a numerical value read off from the 

experimental device. We use ( , , )f p q n
r

, to read: the force at the point p in the 

“direction of q” with numerical value n. So what could be meant by a direction 

read off from a force instrument? We simply assume that the force f
r

 

measurement in a point p delivers a real number n and a point q in the point space  
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M. The two points p and q can then be used to construct an arrow ( , )a p qr . And a 

second arrow ( , ) ( , ), ( , )a p r a p q D p r nλ= ⋅ =
r r  can be constructed. The forces 

( , , )f p q n
r

 could indeed be a vector, i.e. an element in a vector space. However, 

assume as a special case that the set of all forces at p is isomorphic to the set of all 

arrows at p. We set that ( )( , , ) ( , ), ( , )f p q n a p q n L a p q=
r r r

� . Thus every force can 

be associated with a specific arrow. However, this implies that the force is a 

vector only if the arrow is a vector.  

 

6 Different points; the parallel transport (PT) 

 

Section 3 constructed a set of arrows starting at each point p of M. In physics one 

often compares forces and arrows from different points of the metric point set. 

The comparison entails developing a mapping that maps forces and arrows from 

one point to another point such that forces and arrows can be compared at the 

same point. Different mappings are indeed possible. No unique mapping exists a 

priori. 

 

We now construct a specific mapping called parallel transport (PT) of an arrow 

( , )a p qr  to the point ( ', ')a p qr . We simply write  

 

( ) ( , ')( , ), ' ( ', ')t l p pP a p q p a p q=
r r  (6.1) 

 

This we should read: ( ', ')a p qr
: the arrow starting at p’ and ending at q’ , is the 

parallel transported (mapping) of the arrow ( , )a p qr
 to the point p’ along the 

(geodesic) line l(p,p’). We apply the following rules to define the familiar Levi-

Cevita (LC) PT or the Cartan (C) PT 

 

 



 

Discrete and continuous metric point sets                                                          685 

 

( ) ( )
( , ), ( , ') ( ', '), ( ', )

( , '), ( , )

) ( ', ') ( , ) , ( ), ,
) , ( ), ,

) ( ', ') , ( ; ),
l p q l p p l p q l p p

l p p l p q

a L a p q L a p q same length LC C
b same angle with the line LC C

c l p q M same plane no torsion LC

θ π θ

=

= −

∈

r r

 (6.2) 

 

(6.2a) says that the arrow keeps its length when PT. (6.2b) says that the arrow 

keeps its angle with the line when PT. (6.2c) says that the arrow is in the same 

plane when PT. The rules a) and b) apply both for the LC PT and the C PT. For 

the C PT torsion is allowed. Thus (6.2c) does not apply.  

 

We define a curve as segments of lines. The PT along any curve between any two 

points can be found by using that the curve consists of segments of lines. Thus we 

simply write that 

 

( ) ( , ')( , ), ' ( ', ')t C p pP a p q p a p q=
r r  (6.3) 

 

To read: ( ', ')a p qr  is the arrow found by PT of the arrow ( , )a p qr
 to p’ along the 

curve C(p,p’). 

 

Section 2 commented on the fifth postulate of Euclid which gives the flatness. The 

modern mathematical definition of flatness is different, and is connected to the 

PT. The metric point set is called flat if an arrow PT from a point to another point 

gives the same arrow, independently of the chosen curve that one parallel 

transports along. The metric point set is called Euclidean if every arrow parallel 

transported from a point to another point according to the LC PT is independent 

of the chosen curve that one parallel transports along. Thus in this modern 

definition the flatness is not connected to the metric point set, but to the chosen 

PT. Thus in principle the metric point set could be flat according to the old 

definition, but curved according to the modern definition.  
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We now use the LC PT. According to the modern definition we could write for 

flatness 

 

( ) ( , ')( , ), ' ( ', '), ( , ');t C p pP a p q p a p q C p p Flatness= ∀
r r  (6.4) 

 

This property means that it is possible to construct an object ( , )A p q
r

 by collecting 

an arbitrary ( , )a p qr  together with it’s PT arrows as one object; the set ( , )A p q
r

. 

This is indeed the familiar concept learned in school. 

 

However, consider three arbitrary arrows ( , )a p qr
, ( , )a o pr and ( , )a o qr

. ( , )a o pr and 

( , )a o qr can be subtracted locally and algebraically; to read 

( , ) ( , ) ( , )a o r a o q a o p= −
r r r

. We PT ( , )a p qr  to o, to read  

 

( , )( ( , ), ) ( , ')t C o pP a p q o a o r=
r r  (6.5) 

 

Assume that ( , ') ( , )a o r a o r=
r r . It is easily proven that this is fulfilled if we assume 

the condition (6.4). It can also be proven that ar  becomes an element in a vector 

space. We have that 

 

Theorem 2: 

 
2( , ) ( ( ) ( )) , ,i i

i
D p q K p K q p q M= − ∀ ∈∑  (6.6) 

Proof: Let ( , )a p qr
 be the arrow from p to q. Let ( , )a o pr  and ( , )a o qr have the 

components ipα and iqα  respectively. Then by using ( , ') ( , )a o r a o r=
r r  it follows 

that  
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( ) ( ) ( ) ( )
,

1/ 2 1/ 2
2 2

1 1

( , ) ( ( , )) ( ( , ), ) ( , ') ( , ) ( , ) ( , )

( ) ) ( ( ) ( )) )

LC C LC Flatness
t

n n

iq ip i i
i i

D p q L a p q L P a p q o L a o r L a o r L a o q a o p

K q K pα α
= =

= = = = = −

⎛ ⎞ ⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑

r r r r r r

 

Qed. 

 

Thus assume that the points p and q are given coordinates when choosing o as the 

reference point. If the distance between the points is 
1/ 2

2

1
( , ) ( ( ) ( )) )

n

i i
i

D p q K q K p
=

⎛ ⎞
= −⎜ ⎟⎜ ⎟
⎝ ⎠
∑ , it is easily proven that ( , ') ( , )a o r a o r=

r r .  

 

Although we have defined PT for arrows in this section, we could also apply the 

PT for forces in the same way. 

 

Finally, we comment what the literature refers to as auto parallel lines. These are 

curves where the PT of an arrow, that is tangential to the curve, stays tangential 

also after the PT. Auto parallel lines do not in general equal the geodesic lines 

defined according to the metric properties in section 2.  

 

Summarizing: We have constructed different parallel transports geometrically. 

 

7 Conclusions 

 

We have studied fundamental properties of continuous and discrete metric point 

sets. Our focus is pure geometrical objects. We show how geodesic lines and 

angles can be constructed from an imposed metric even in discrete spaces. Lines 

in discrete and continuous metric point sets are constructed and compared with 

Euclid’s five axioms. The angle between two lines is defined. Euclid’s axioms E1 

and E2 are sufficient to achieve local angles and to define an infinite space. Axiom  
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E3 is sufficient to define a space with more than one dimension. Axiom E4 is 

sufficient to define a homogenous space. Axiom E5 is sufficient to define a flat 

space. We study how the concepts of vector spaces could appear from the metric 

point set. We have constructed arrows from each point in the metric point set. These 

arrows can be conceived as lines with a direction. The sum of arrows from each point 

is constructed algebraically without parallel transport. A method is presented for 

constructing coordinates. We have constructed coordinates in a metric point space 

by assuming that the arrow from a specific point o in the metric point space defines a 

vector space at each point p. We comment on the force concept. Different parallel 

transports are constructed geometrically. The concepts of tensors and tensor fields 

are briefly addressed. 

 

Appendix A: The Euclidean point space 

The literature provides the following definition of an Euclidean point space: A 

manifold (a set) M  is usually called a Euclidean Point Space (EPS) and denoted 

as ξ  if: 

 

: , , , :There exist a function a MxM V and a Su function written such that→ +  

 

) ( , ) ( , ) ( , ), , , ,
) , , ( , )

i a p q a p r a r q p q r M
ii p M and v V q M such that a p q v

= + ∀ ∈
∀ ∈ ∀ ∈ ∃ ∈ =

 (A1) 

 

V is an inner product set (space) with the traditional properties (Appendix A, [1]): 

 

The elements of ξ  are called points, and the inner product space V  is called the 

translation space of ξ . The function ( , )a p q  is the called the vector determined 

by the end point q (NB) and the initial point p. The condition ii) is equivalent to 

requiring the function ( ) : ( ) ( , )p pa q V defined by a q a p qξ → = to be one-to-one 

for each q. The dimension of ξ , written as dim ξ is defined to be the dimension of  
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the translation space V . If the vector space V  does not have an inner product, the 

set ξ  is called an affine space. Observe that the inner product space V  is made an 

Euclidean point space if one define a function ( , ) ( 1 ) , ,a p q p q p q V= − + ∀ ∈ . So 

an inner product set (space) can be an Euclidean point space. 

 

Appendix B: The vector space. 

 

The literature provides the following definition of a vector space and inner 

product space. There exists a sum function: :Sum VxV V→  (+ for short) and a 

multiplication function :Mu RxV V→  (. for short) with the following properties 

 

), , ), ( ) ( ), ), , ,
), ( ) , ), ( )
), ( ) ( ) , ),1 , ),0

, , , , , .

a u v v u b u v w u v w c V v v v V
d u v u v e v u v
f v v g v v h v
where R u v w V

θ θ
λ λ λ λ μ λ μ
λ μ λ μ θ

λ μ

+ = + + + = + + ∃ ∈ + = ∀ ∈
⋅ + = ⋅ + ⋅ + ⋅ = ⋅ + ⋅
⋅ ⋅ = ⋅ ⋅ = ⋅ =

∈ ∈

r r r r r r r r r r r r r
�

r r r r r r r

r r r r r

r r r

 (B1) 

 

There exists a product :P VxV R→  (also called the dot or the inner product � for 

short) with the following properties 

 

( )
) , ) ( ) ,
) ( ) , ) 0, ) 0

a u v v u b u v w u w v w
c u v u v d u v e u u uλ λ θ

= + = +

⋅ = ⋅ ≥ = ⇔ =

r r r r r r r r r r r
� � � � �
r r r r r r r r r
� � � �

 (B2) 

The length of a vector is defined as ( )
def 1/ 2( )L v v v=

r r r
� . We can check whether  

( , ) {{ }, ( , )}, ( , )
def

pa p q p l p q a p pω= =
rr r  is an element in a vector space. Some of   

the axioms are simply fulfilled by construction. 
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:
) , ( , ) ( , ) ( , ) ( , ),
), ( ) ( )?,
), ( , ) ( , ),

), ( ) ?,
), ( ) ,?

), ( ( , )) ({{ },

p

p

Vector space
a a p q a p r a p r a p q By construction
b u v w u v w
c a p q a p q By construction

d u v u v
e v u v

f a p q p l

ω

λ λ λ
λ μ λ μ

λ μ λ μ

+ = +
+ + = + +

+ =

⋅ + = ⋅ + ⋅
+ ⋅ = ⋅ + ⋅

⋅ ⋅ = ⋅ ⋅

r r r r

r r r r r r

rr r

r r r r

r r r

r ( , )}) {{ }, ( ) ( , )} ( ) ( , ),
),1 ( , ) ( , ), ,
),0 ( , ) ,

p

p

p q p l p q a p q By construction
g a p q a p q By construction
h a p q By construction

λ μ λ μ

ω

= ⋅ = ⋅
⋅ =
⋅ =

r

r r

rr

 (B3) 

 

Further for the inner product 

 

( )

( )

( , ) ( , )), ( , ) ( , ) ( , ) ( , ) ( , ) ( , ),

) ( ) ,?
), ( , ) ( , ) ( ( , )) ( , ),
), ( , ) ( , ) 0,
)

a p q a p ra a p q a p r D p q D p r Cos a p r a p q By construction

b u v w u w v w
c a p q a p r a p q a p r By construction
d a p q a p r By construction
e a

θ

λ λ

= =

+ = +

⋅ = ⋅

≥

r r
r r r r

� �
r r r r r r r

� � �
r r r r

� �
r r

�
r( , ) ( , ) 0 ( , ) ,pp q a p q a p q By constructionω= ⇔ =

rr r
�

 (B2) 

 

Appendix C 

 

Theorem C1 (Schwarz inequality): 

 

( ) ( ), ,u v L u L v u v V⋅ ≤ ∀ ∈  (C1) 

Proof: Define the vector 2( ) ( )L u v v u u⋅ − ⋅ ⋅ . Then it follows that 

 

( )2 4 2 2 2

2 2 2

( ) ( ) ( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) ( ) ( )

L L u v v u u L u L v u v L u

u v L u L v u v L u L v

⋅ − ⋅ ⋅ = − ⋅ ≥

⇒ ⋅ ≤ ⇒ ⋅ ≤
 

Qed. 
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Theorem C1 (Triangle inequality): ( ) ( ) ( )L u v L u L v+ ≤ +  

 

Proof: 

 
2 2 2 2 2

2

( ) ( ) ( ) ( ) ( ) 2( ) ( ) ( ) 2 ( ) ( )

( ( ) ( )) ( ) ( ) ( )

L u v u v u v L u L v u v L u L v L u L v

L u L v L u v L u L v

+ = + ⋅ + = + + ⋅ ≤ + +

= + ⇒ + ≤ +
 (C2) 

Qed. 

 

Theorem C2 (Specific length relation): 

 

( ) ( ) ( )L u v L u L v− ≥ − (Not valid for a general norm) (C3) 

 

Proof: It follows that 

 
2 2 2 2 2

2

( ) ( ) ( ) ( ) 2( ) ( ) ( ) 2 ( ) ( ) ( )

( ( ) ( )) ( ) ( ) ( )

L u v u v u v L u u v L v L u L u L v L v

L u L v L u v L u L v

− = − ⋅ − = − ⋅ + ≥ − +

= − ⇒ − ≥ −
Q

ed 

 

Theorem C3 (The length is a norm): 

 

Proof: The norm on a vector set (space) has the following properties 

 

) 0, ) 0 , ) ( ) ,
)

a v b v v c v Àbs v
d u v u v

θ λ λ≥ = ⇔ = ⋅ =
+ ≤ +

� � � � � � � �

� � � � � �
 (C4) 

 

Proof: a)
) ( ) 0, ) ( ) 0 , ) ( ) ( ) ( ),
) ( ) ( ) ( )

a L v b L v v c L v Abs L v
d L u v L u L v

θ λ λ≥ = ⇔ = ⋅ =
+ ≤ +

 

Qed. 



 

692                                                                            J. F. Moxnes and K. Hausken 

 

 

Theorem C4 (The distance function d is a metric) : : , ( , ) ( )d VxV R d u v L u v→ = −  

 

Proof: 

 

) ( , ) 0, ) ( , ) 0 , ) ( , ) ( )
(( ) ( )) ( ) ( ) ( , ) ( , )

a d u v b d u v u v c d u v L u v
L u w w v L u w L w v d u w d w v

≥ = ⇔ = = −
= − + − ≤ − + − = +

 (C5) 

Qed. 

 

Theorem C5: ( ) ( ) ( ), dim( ) 3tW v x v W v W v and V= Ω ⇔ = − =  

 

Proof: left to right. Let { }ie i=1,.3, be a basis for V. Then 

 

( , ( )) ( , ) ( , ) ( , )p p ijk i j k ijk i k j ikj i k j ikj i k j p pP u W v P u x v u e v e u v u v P u e v eε ε ε ε= Ω = Ω = Ω = − Ω = Ω
 

Right to left: Define 1 23, 2 13 3 12(1/ 2) , . . ,k ijk ijW i e W W WεΩ = − Ω = − Ω = Ω = − , 

where ( ( ), )ij i jW P W e e=  

Qed. 

 

Appendix D: Tensors and tensor fields  
 
We are in the position to define tensors and tensors fields. Let V be a vector space 

with elements v. Let V* be the set of all linear transformations from V into the 

real numbers (called the dual space), with elements v*. Finally let V** be the set 

of all linear transformations from V* into R, with elements v**. All those spaces 

are easily defined to be vector spaces. As an example we use 
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11 2
1 2 1 2

2

1 2 1 2 1 2
1 2

11 2
1 2 1 2

2

, , , , ,

* *, * * * * *, * * * , *, * ,

**
** **, ** ** ** ** **, ** , **, ** ,

**

v
v V v v e v e v e e base vectors

v

v V v v e v e v v v e e base vectors

v
v V v v e v e v e e base vectors

v

⎡ ⎤
∈ = + = =⎢ ⎥

⎣ ⎦
⎡ ⎤∈ = + = =⎣ ⎦

⎡ ⎤
∈ = + = =⎢ ⎥

⎣ ⎦

r r r r

r r r r

r r r r

 (D1) 

where two transformations are defined as 

 

( ) 11 2 1 2
1 2

2

11 2 1 2
1 2

2

* * * * * , *: *

**
**( *) * * * ** * ** , **: * **

**

v
v v v v v v v v R v V V

v

v
v v v v v v v v R v V V

v

⎡ ⎤⎡ ⎤= = + ∈ →⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤= = + ∈ →⎢ ⎥⎣ ⎦ ⎣ ⎦

 (D2) 

Now we demand that 

 

( ) 1 2 1 2 1 2 1 2
1 2 1 2

1 2
1 2

* **( *), *, * * * * ** * **, *, *

** , **

mod
v v v v v v v v v v v v v v v v

v v v v

= ∀ ⇒ + = + ∀

⇒ = =
 (D3) 

 

This enables us to establish an isomorphic relation between the space V and the 

space V**, which enables us to identify the space V with V**. Applying the 

isomorphic relation causes the number of variables to become much smaller. 

Define the multi linear functions T by: 

 

: * * *... * ** ** **... **
p times q times

T V xV xV V xV xV xV V R→144424443 14444244443  (D4) 

T is called a tensor of contra variant order p and covariant order q. In the example 

above T= v** is a tensor of order p=1,q=0, called a pure contra variant tensor of 

order 1.  

 

Consider the example 
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( ) ( )

11 12

21 22

1
1 1 2 1 1 2 2 1 2

1 11 12 21 222

1
1 2 1 1 2 2

11 2

**
( *, **) * * * ** ** * ** **

**

'*
( *, '*) * * * '* * '*

'*

a a
A

a a

v
T v v v v A v a v a v v a v a v

v

v
T v v v v v v v v

v

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

⎡ ⎤
⎡ ⎤= = + + +⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤
⎡ ⎤= = +⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 (D5) 

 
1

1T  is a mixed tensor. 11T  is a pure covariant tensor of order 2. We now define a 

special transformation called the tensor product TP ; V*xV**->R by the 

following rule 

 

 

 

( )

[ ]

1 11 2 1 2
*, **

2 2

1 2
1 1 1 11 121 2

1 22 21 222 2

11 2
11

2

: * ** ,
**

*, ** * * * * ,
**

** * ** *
* * ,

** * ** *

1 1 0
* * 1 0

0 0 0

def

v v

def def

TP V xV R
v u

TP u u u u v v
v u

u v v v v a a
u u A A

u a av v v v

u
e u u

u

→

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤= = =⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤⎡ ⎤⎡ ⎤= =⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

[ ]

[ ] [ ]

11 2
12

2

1 11 2 1 2
21 22

2 2

1 0 1
, * * 0 1 ,

0 0 0

0 0 0 0 0 0
* * 1 0 , * * 0 1 ,

1 1 0 1 0 1

u
e u u

u

u u
e u u e u u

u u

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤= =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= = = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (D6) 

 

where ie are the bases. Further we have that 
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[ ] [ ]

[ ] [ ]

11 *, ** 12 *, **

21 *, ** 22 *, **

: * ** ,

1 0
1 0 , , 1 0 , ,

0 1

1 0
0 1 , , 0 1 , ,

0 1

v v v v

v v v v

TP V xV R

a TP a TP

a TP a TP

→

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤
= =⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤

= =⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠

 (D7) 

 

Assuming generally that the dimensions of V* and V** are n, it follows that 

 

( ) 1 11 1 2 1 2
1 *, **

2 2

: * ** ,
**

*, ** * * * *
**

, 1 4,

v v

p q

TP V xV R
v u

T u u u u v v
v u

Dim N p q Dim+

→

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

= = = ⇒ =

 (D8) 

 

Tensors of higher order are defined accordingly. If n
mT  and '

'
n
mS  are two tensors of 

contra variant order n and covariant order m, and contra variant order n’ and 

covariant order m’ respectively, the components are given by 
{

}
..
..

ntimes
i j
p q

mtimes

a and 
{

}
'

..
..

'

n times
k l
q s

m times

b . 

The tensor product is written as T S⊗ . The components of this tensor is written 

as  

 
.. .. .. ..
.. .. .. ..

i jk l i j k l
p q s p q q sc a b=  (D9) 

 

Tensors defined according to tensor products are called simple tensors. In general 

the tensor product can be seen as a mapping from V*xV** into a tensor 1
1T  for 

second order tensors. In general tensors of order 2 closely follow the familiar 

matrix rules outlined in elementary linear algebra.  

 

Assume that the basis of V * and V** are changed. Thus the components of the  
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matrix of the tensor from V*xV** also change. Assume that 

 

* *, ** **, ;q q
k q k q kk ke H e e H e e new= =& &&  (D10) 

Then it follows that the new components are given by 

 
k l

ij kl i ja a H H= & &&  (D11) 

 

Generally such a relation could be used as a definition of a tensor instead of the 

definition in (D4). 

 

Assume that we have a family of tensors kla  at different points of space. Our 

intention is to define a tensor field, which is quite different from the concept of a 

tensor. Assume that the coordinates are defined. Introduce the mappings  

 

1

: , :

( ( )) :

n
kl p i

n n
kl kl i

a M T K M R

A a K R R T−

→ →

= →
 (D12) 

 

Thus to each point in the point space we have a tensor. 

 

Assume that we change basis for V**. The coordinates are related to the 

components. What happens then with the components of the tensor at each given 

point? They change according to the rule 

 

1 2 3

: , :

, ( , , ), : , ;

n
kl p i

k l
k k

ij kl i ii j

a M T K M R

x xA A x x x x x x old x new
x x

→ →

∂ ∂
= =

∂ ∂

 (D13) 
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Appendix E: A construction of a vector space without any specific parallel 

transport 

 

Define a new set called ap A⊂ . The set is constructed by collecting an arbitrary 

( , )a p qr  together with it’s PT arrows in one set ( , )A p q
r

. This familiar concept is 

learned in school. The arrow together with all its PT arrows from p are conceived 

as simply one arrow ( , )A p q
r

. 

 

( )( , ) { ( , ) ( , ), ( , )}, , , ,t

def
A p q a r s P a r s p a p q r s p q M= = ∈
r r r r

�  (E1) 
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