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Abstract 
 
Propagation effects are analyzed for electromagnetic (EM) waves which satisfy 
the non-linear Schrodinger equation (NLSE) in a dispersive wave guide. The 
coupling between momentum and frequencies due to dispersion relation is treated  
by a coupled Hamiltonian-Momentum operator. One-Soliton solution of NLSE is 
analyzed with  quantum-mechanical (QM) effects. The integrability condition for 
NLSE is related to Hamiltonian and Momentum Hermitian operators. 
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1. Introduction 
 
In the present article we would like to analyze some quantum mechanical (QM) 
effects for electromagnetic (EM) waves which satisfy the non-linear Schrodinger 
equation (NLS) in a dispersive wave guide using quantum optics methods. The 
common procedure for studying QM effects for the NLSE is by the use of 
quantum field theory [1-2]. In such approach one uses the field operators ( )ˆ ,z tφ  

and ( )†ˆ ,z tφ  satisfying the boson commutation relations (CR) 
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  ( ) ( )†ˆ ˆ, , ', ( ')z t z t z zφ φ δ⎡ ⎤ = −⎣ ⎦  ,      (1) 

where z  is the one dimensional propagation coordinate. For one dimensional 
Hamiltonians one uses multiplications of such operators and their derivatives 
integrated over the z  coordinate. Usually QM solutions of NLSE by using 
quantum field theories turn to be quite complicated. In Quantum Optics one can 
use the one dimensional equal space CR for the annihilation and creation 
operators given as [3-5] 
  ( ) ( )†ˆ ˆ, ' ( ')a z a z z zδ⎡ ⎤ = −⎣ ⎦  .           (2) 

 In conventional QM analysis ( ) ( )†ˆ ˆa t a t  represents the photon number operator 

in the quantization volume while in our analysis ( ) ( )†ˆ ˆ, ,a z t a z t  represents the 
number of photons per unit length at coordinates ,z t . The total photon number 
operator n̂  in a soliton is given by  ( ) ( )†ˆ ˆ ˆ, ,a z t a z t dz n=∫ . Soliton squeezing 

effects obtained by Kerr interaction have been treated by Haus [6] and Haus and 
Lai [7] using a linearized approach. Although some of the derivations in the 
present work are similar to those presented in [6] the approach for treating Kerr 
effects is different and more similar to other conventional quantum optics 
methods [8-12]. 
  
 For various systems the momentum operator Ĝ  has been used for 
evaluating QM propagation effects, including coupling between different modes 
[3,13-14]). In the present work we treat, however, one mode of the EM field 
which includes a coupling between momentum and frequencies due to dispersion 
relation. For this purpose it is useful to relate the integrability condition to 
Hamiltonian and Momentum Hermitian operators. 
 The article is arranged as follows. In Section 2 QM propagation effects for 
linear dispersive wave guide are treated.  In Section 3 we analyze  one-soliton 
solution of the NLSE in which non-linear Kerr interaction effects are taken into 
account. QM effects are discussed. We show the relation between the integrability 
condition for NLSE and Hamiltonian and Momentum matrices representing Lax 
pair [15]. We relate the present analysis for the 'compatibility condition' to the 
one-soliton solution of NLSE. In Section 5 we summarize our results and 
conclusion. 
 
 
2. Propagation of EM waves in a linear dispersive wave guide 
 
In treating EM waves in linear dispersive waveguide we encounter the problem 
that the frequency ω  and the wavevector k are coupled by the dispersion relation 
[6] : 

 ( )
2

2
0 0 2( )

o ok k k k

d dk k k k
dk dk
ω ωω ω δ δ

= =

⎛ ⎞⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

�  .   (3) 

Here 0ω  is the resonant frequency corresponding to the wavevector 0k ,  
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o

g
k k

d v
dk
ω

=

⎛ ⎞ =⎜ ⎟
⎝ ⎠

         (4) 

is the group velocity, and 
2

2

ok k

d
dk
ω

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

is the group velocity dispersion. Higher order 

terms in the series expansion of ω  as function of  kδ are neglected here as we 
assume that we have only a narrow distribution of wavevectors around the central 
wavevector 0k . We limit the analysis to the one dimensional case.  
 The coupled  Hamiltonian-Momentum operator which includes the 
coupling between frequencies and wavevectors  is given as 
 †

0 0 0
ˆ ˆ ˆ( ) ( ) ( ) ( )H k k a k k a k k d kω δ δ δ δ= + + +∫h  .    (5) 

In Eq. (5) †
0ˆ ( )a k kδ+ 0ˆ( )a k kδ+  represents the number of photons which have 

momentum 0k kδ+  with the energy 0( )k kω δ+h  summed over all modes, 
represented by the integration over kδ . 

By substituting Eq. (3) into Eq. (5) we get: 

( )
2

2 †
0 0 0 02

ˆ

ˆ ˆ( ) ( ) ( )
o ok k k k

H

d dk k k a k k a k k d k
dk dk
ω ωω δ δ δ δ δ

= =

=

⎡ ⎤⎛ ⎞⎛ ⎞+ + + +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∫h
.  (6) 

We will transform the dependence of the creation and annihilation operators in 
Eq. (6) on the momentum 0k kδ+  to dependence on the coordinate z  by using 
the following Fourier transforms: 

( )

[ ]

( ) ( )

0 0

† †
0 0

† †
0 0 0

1ˆ ˆ( ) ( ) exp ;
2
1ˆ ˆ( ) ( ') exp ( ) ' ' ;
2

1ˆ ˆ ˆ ˆ( ) ( ) ' ( ') ( ) exp '
2

a k k a z i k k z dz

a k k a z i k k z dz

a k k a k k dz dz a z a z i k k z z

δ δ
π

δ δ
π

δ δ δ
π

+ = +⎡ ⎤⎣ ⎦

+ = − +

+ + = + −⎡ ⎤⎣ ⎦

∫

∫

∫ ∫

,(7) 

where the operators ˆ( )a z  and †ˆ ( )a z  satisfy the CR  given in Eq. (2).  
 We substitute  Eq. (7) into Eq. (6) obtaining 
 

( ) ( )

( ) ( )

2
2 †

0 02

†
0

ˆ /

ˆ ˆ' ( ') ( )exp '

ˆ ˆ( ') ( )exp ' ( )
o ok k k k

H

d dk k dzdz a z a z i k k z z
dk dk

a z a z i k k z z d k

ω ωω δ δ δ

δ δ

= =

=

⎡ ⎤⎛ ⎞⎛ ⎞+ + + −⎡ ⎤⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
+ −⎡ ⎤⎣ ⎦

∫ ∫∫

h

  

        (8) 
and perform the following three integrals: 
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( ) ( ) ( )0
1 exp ' ( ) '

2
i k k z z d k z zδ δ δ

π
+ − = −⎡ ⎤⎣ ⎦∫        ,                (9)                        

( ) ( )

( ) ( ) ( )

1 exp ' ( )
2

exp ' ( ) '
2

o

o o

k k

k k k k

d k i k z z d k
dk

i d di k z z d k i z z
dk z dk z

ω δ δ δ
π

ω ωδ δ δ
π

=

= =

⎧ ⎫⎪ ⎪⎛ ⎞ − =⎡ ⎤⎨ ⎬⎜ ⎟ ⎣ ⎦⎝ ⎠⎪ ⎪⎩ ⎭
∂ ∂⎛ ⎞ ⎛ ⎞− − = − −⎡ ⎤⎜ ⎟ ⎜ ⎟⎣ ⎦∂ ∂⎝ ⎠ ⎝ ⎠

∫

∫
  , (10) 

( ) ( )

( ) ( ) ( )

2
2

2

2 2 2 2

2 2 2 2

1 exp ' ( )
2

1 exp ' ( ) '
2

o

o o

k k

k k k k

d k i k z z d k
dk

d di k z z d k z z
dk z dk z

ω δ δ δ
π

ω ωδ δ δ
π

=

= =

⎧ ⎫⎛ ⎞⎪ ⎪ − =⎡ ⎤⎨ ⎬⎜ ⎟ ⎣ ⎦
⎝ ⎠⎪ ⎪⎩ ⎭
⎛ ⎞ ⎛ ⎞∂ ∂

− − = − −⎡ ⎤⎜ ⎟ ⎜ ⎟⎣ ⎦∂ ∂⎝ ⎠ ⎝ ⎠

∫

∫
.(11) 

                        
Substituting Eqs. (9-11) into Eq. (8) and transforming the derivatives by partial 
integration we get: 

† †
0

2 2
†

2 2

ˆ

ˆ ˆ ˆ ˆ( ') ( ') ' ( ') ( ') '
'

ˆ ˆ( ') ( ' '
'

o

o

k k

k k

H
da z a z dz i a z a z dz
dk z

d a z a z dz
dk z

ωω

ω

=

=

=

∂⎧ ⎫⎛ ⎞− ⎨ ⎬⎜ ⎟ ∂⎩ ⎭⎝ ⎠

⎧ ⎫⎛ ⎞ ∂
− ⎨ ⎬⎜ ⎟ ∂⎩ ⎭⎝ ⎠

∫ ∫

∫

h h

h

 .   (12) 

         
In Eq. (12) we arranged the space derivative so that they operate to the right . By 
using partial integration Eq. (12) can be transformed into the other form  

† †
0

2 2
†

2 2

ˆ

ˆ ˆ ˆ ˆ( ') ( ') ' ( ') ( ') '
'

ˆ ˆ( ' ( ') '
'

o

o

k k

k k

H
da z a z dz i a z a z dz
dk z

d a z a z dz
dk z

ωω

ω
=

=

=

∂⎧ ⎫⎛ ⎞+ ⎨ ⎬⎜ ⎟ ∂⎩ ⎭⎝ ⎠

⎧ ⎫⎛ ⎞ ∂
− ⎨ ⎬⎜ ⎟ ∂⎩ ⎭⎝ ⎠

∫ ∫

∫

h h

h

 . (13)  

The Hamiltonian of Eq.  (12) or of Eq. (13) is the generator for the coupled space-
time propagation. The equation of motion for the annihilation operator is given by 

  ˆˆ ˆ( , ) ( , ),i a z t a z t H
t
∂ ⎡ ⎤= ⎣ ⎦∂

h  ,       (14) 

where  Ĥ  is given by Eq. (12) and the CR of Eq. (2) can be used.  By substituting 
Eq. (12) into Eq. (14) and performing the CR we get 

2 2

0 2 2ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )
o o

k k k k

d da z t i a z t i a z t a z t
t dk z dk z

ω ωω
= =

⎛ ⎞⎛ ⎞∂ ∂ ∂⎛ ⎞= − ⎜ − − ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
 .  (15) 
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The corresponding equation for †ˆ ( )a z
t
∂
∂

can be obtained by the dagger of Eq. (15) 

(or correspondingly  from Eq. (13)). 
We define: 

               ( ) ( ) 0ˆ ˆ exp( )a z a z i tω= −%         ,       (16) 
and then  Eq. (15) is transformed into 

2 2

2 2

1ˆ ˆ ˆ( , ) ( , ) ( , )
2

o

g
k k

da z t v a z t i a z t
t z dk z

ω

=

⎛ ⎞∂ ∂ ∂
= − + ⎜ ⎟∂ ∂ ∂⎝ ⎠

% % %   ,                (17) 

where gv  is the group velocity defined in Eq. (4). 
We use the following additional transformation: 

'
g

zt t
v

= −    ,                      (18) 

and then Eq. (17) is transformed into  

 
2 2

2 2

1ˆ ˆ( , ) ( , )
' 2

ok k

da z t i a z t
t dk z

ω

=

⎛ ⎞∂ ∂
= ⎜ ⎟∂ ∂⎝ ⎠

% %   .        (19)       

The time '
g

zt t
v

= −  indicates that we removed the time delay 
g

z
v

 from the 

ordinary time and the use of operator ˆ( )a z%  indicates that we removed the rapid 
carrier oscillation frequency 0exp( )i tω−  from ( )â z .  
 

One should notice that the Hamiltonian  of Eq. (12) or (13) includes 
integration over the 'z  coordinate where such integration is in analogy with 
quantum field Hamiltonians which include also such space integration.  

 
For simplicity of notation, from now on, in using Eq. (19) we will remove 

the prime and the  tilde from this equation but we need to take into account that 

the time in such equation represents a time delayed by  
g

z
v

and that from ( )â z we 

removed the rapid variation 0exp( )i tω− .  
 
The nonlinear Schrodinger Hamiltonian can be obtained by adding to the 

linear Hamiltonian the Kerr effect represented  by nonlinear Hamiltonian  

( ) † †ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )
2K
KH t dza z t a z t a z t a z t= − ∫h ,                                     (20)   

where K is the Kerr constant . 
 

By taking into account the non-linear momentum operator ˆ
KH  the 

equation of  motion for  ˆ( , )a z t  becomes  
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2 2

2 2

2
†

2

ˆ( , )

1 ˆˆ ˆ( , ) ( ), ( , )
2

1 ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )
2

o

k
k k

a z t
t

d ii a z t a z H z t
dk z

i C a z t iKa z t a z t a z t
z

ω

=

∂
=

∂
⎛ ⎞ ∂ ⎡ ⎤− =⎜ ⎟ ⎣ ⎦∂⎝ ⎠

∂
+

∂

h
           (21)  

We have added here the CR with ˆ
KH  and in a short notation the constant 

2

2

ok k

dC
dk
ω

=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

is representing the group velocity dispersion.  

 
 
3. One-soliton solution of  NLSE with QM effects 

 
For obtaining a classical soliton solution of NLSE we exchange the 

operator ˆ( , )a z t into its classical representation  ( , )ca z t  and then we get the 
classical equation  

2

2

1 ˆ( , ) ( , ) ( , ) ( , ) ( , )
2c c c c ca z t i C a z t iKa z t a z t a z t

t z
∗∂ ∂

= +
∂ ∂

         .   (22) 

A soliton solution of Eq. (22) depends on 4 constants: a constant 0x  
representing the pulse center, the carrier frequency of the soliton, an arbitrary 
phase constant 0θ  of the soliton and the total intensity of the soliton. The solution 
of Eq. (22) is simplified by eliminating these constants: The constant 0x  
representing the soliton center is eliminated by choosing a coordinate system 
whose origin is at the pulse center. The arbitrary constant  phase 0θ  of ( , )ca z t  is 
chosen to be equal to zero. The carrier frequency of the soliton is assumed to 
coincide with the frequency 0ω . The total number of photons in the soliton 
remains as an important parameter . Under these assumptions the one-soliton 
classical solution of Eq. (22) is given as [6] 

2

( , ) exp sec
2c

KA za z t A i t h
ξ

⎡ ⎤⎛ ⎞ ⎛ ⎞
= ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎣ ⎦
 ,      (23) 

with the constraint 

   2
2

CKA
ξ

=   .     (24) 

The normalization constant A  is assumed to be real. The  complex classical 
amplitude  ( , )ca z t  is normalized so that by integrating its magnitude squared over  
z  we get the number n of photons in the soliton: 

 2 2 2 2| ( , ) | sec 2c
zdz a z t A h dz A nξ
ξ
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

∫ ∫      .                  (25) 
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We notice according to Eq. (25) that the number of photons in the soliton is 
proportional to  2A  representing the normalization constant squared. The 
parameter ξ  is related to the pulse shape. For larger values of ξ  the soliton pulse 
becomes narrower with a larger amplitude at the pulse center and larger number 
of photons. The one-soliton solution of the NLSE represents a balance between 
linear dispersion, which tends to break up the soliton wave packet, and a focusing 
effect of the cubic nonlinearity, produced by Kerr effect. 

We can change the space z  dependence of Eq. (24) into the wavevector k  
dependence by using the Fourier transform 

 ( )1( ) exp sec sec
2 22

z kF k ikz h dz hπ π ξξ
ξπ

∞

−∞

⎛ ⎞ ⎛ ⎞= − = ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∫   (26) 

Then the one-soliton solution can be  transformed into 

 
2

( , ) exp ( )
2c

KAa k t i t F k
⎡ ⎤⎛ ⎞

= ⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

   .               (27) 

Eq. (27) has a quite simple explanation showing that in the soliton pulse we have 
a certain distribution of wavevectors  producing its wavepacket . One needs, 
however, to take into account that the rapid frequency dependence ( )0exp i tω− has 
been eliminated by using Eq. (16) (omitting for simplicity of notation the tilde on  
operator â ). Also the relative simple forms of Eq. (23) or (27) is obtained under 
the above simplifying conditions.. 

 We can use a certain integration over the z  dependence of the soliton 
exchanging the classical solution of Eq.  (23) into  

  
2

( ) 2 exp
2c

KAa t A i tξ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 ,              (28) 

so that in agreement with Eq. (25) we will get  
  2 2| ( ) | 2ca t n A ξ= =   .     (29) 
A possible quantum analog of the classical amplitude ( )ca t of Eq. (28) might be 
obtained by assuming that the soliton is produced as a coherent state ( )tα where  

 2| ( ) |t nα = = 22A ξ  ,                   (30) 

and the phase term of  ( )tα  is given by 
2

exp
2

KAi t⎡ ⎤
⎢ ⎥
⎣ ⎦

. The photon number 

distribution of the one-soliton state becomes then : 

 
{ } ( )

2
2

2 exp / 2
( ) exp

!

n
A ikA t

t A n
n

ξ
α ξ

⎡ ⎤⎣ ⎦= −   .    (31) 

For each number state n in the coherent photon distribution  an additional phase 

given by 2exp / 2ikA tn⎡ ⎤⎣ ⎦  is introduced. The phase 2 / 2KA tn is proportional to the 

photon number and to 2A (see Eq.(25)) and increases linearly with time. Similar 
phases are known to be obtained by the ordinary Kerr interactions[8-10]. 
Poissonian photon number uncertainty has been obtained also in [7]. 
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4.  The integrability condition for NLSE related to Hermitian 
operators   
 
Our interest in the present Section is to show that the integrability condition for 
NLSE can be related to Hamiltonian and Momentum operators representing Lax 
pair both described by Hermitian matrices. Let us assume that we have a two 
dimensional wavefunction depending both on z  and t  

  1

2

( , )
( , )

( , )
z t

z t
z t

ψ
ψ

ψ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

r     .    (32) 

Suppose that  ( , )z tψr satisfy the  Schrodinger equation : 

  1 1 1

2 2 2

( , ) ( , ) ( , )
( , ) ( , ) ( , )
z t z t z t

H
z t z t z tt i

ψ ψ ψ
ψ ψ ψ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ Η

= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
%   ,              (33) 

where Η  is a two dimensional Hermitian matrix which can include a function of 
( , )u z t and its derivatives.  Suppose  also that ( , )z tψr  satify the momentum 

equation [3-5, 13-14] equation : 

 1 1 1

2 2 2

( , ) ( , ) ( , )
( , ) ( , ) ( , )
z t z t z t

i M
z t z t z tz

ψ ψ ψ
ψ ψ ψ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂

= Μ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
%   ,   (34) 

where Μ  is an Hermitian  two dimensional matrix which also can include a 
function of  ( , )u z t and its derivatives. We find it convenient to represent the 
equations of motion with H%  and M%  which are not Hermitian but are related to 
the Schrodinger and Momentum Hermitian matrices by Eqs. (33-34).  

We assume the Compatibility Condition 

  ( , ) ( , )z t z t
z t t z

ψ ψ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
r r  .      (35) 

where on the left side of this equation we perform first  the derivative of  ( , )z tψr  
according to t  and afterwards according to z  while on the right side we inverse 
the order of these derivatives. Using Eqs, (33-34) we get    

 ( )( , ) ( , ) ( , )z t z t z t
z t z z

ψ ψ ψ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= Η = Η + ΗΜ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
r r r% % % %  ,    (36) 

 ( )( , ) ( , ) ( , )z t z t M z t
t z t t

ψ ψ ψ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= Μ = + ΜΗ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
r r r% % % %   .     (37) 

Substituting Eqs. (36-37) into Eq. (35  ) we get the Compatibility Condition 

 0
t z
∂ ∂

ΗΜ −ΜΗ − Μ + Η =
∂ ∂

% % % % % %           (38) 

The idea is that by using special forms for the matrices Μ%  and Η%  which satisfy 
the compatibility equation  (38) they lead to integrable nonlinear equation. We 
demonstrate here such an approach for the NLSE.  

In the present analysis we define: 
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0 ( , )
( , ) 0

u z t
u z t∗

−⎛ ⎞
Μ = ⎜ ⎟

⎝ ⎠
%   ,         (39) 

 

2

2

( , )| ( , ) |

( , ) | ( , ) |

du z ti u z t i
dz

du z ti i u z t
dz

∗

⎛ ⎞−⎜ ⎟
Η = ⎜ ⎟

⎜ ⎟
⎜ ⎟
⎝ ⎠

%   ,              (40)                          

where ( , )u z t is a function dependent on time t  and on space z .  
 Substituting Eqs. (39-40) in the compatibility equation  (38) we get after 
straightforward calculations 

2
2

2

2
2

2

0 2 | 0 0
0 0

2 | | 0

u ui iu u
t z

u ui i u u
t z

∗
∗

⎛ ⎞∂ ∂
+ +⎜ ⎟ ⎛ ⎞∂ ∂⎜ ⎟ = ⎜ ⎟∂ ∂⎜ ⎟ ⎝ ⎠− −⎜ ⎟∂ ∂⎝ ⎠

 . (41) 

While the diagonal elements in the compatibility equation vanish in a trivial way 
the vanishing of the nondiagonal elements lead to NLSE (up to some 
normalization constants): 

2
2

2

( , ) ( , ) 2 | ( , ) | ( , ) 0u z t u z ti i u z t u z t
t z

∂ ∂
+ + =

∂ ∂
 ,       (42) 

and to the complex conjugate of this equation. We claim, therefore, that the 
function ( , )u z t  used in the above analysis represents a solution to NLSE. 
 Eqs. (33-34) have a simple geometric interpretation as these equations 
describe connections on a two-dimensional vector bundle  over the ( ),z t plane 
[16].  Eq. (34) describes how to 'parallel translate'  the vector ( , )z tψr  in the z -
direction and Eq. (33) describes how to 'parallel translate'  ( , )z tψr  in the t -
direction. The matrices Μ% and Η% are the 'connection coefficients'. A connection is 
defined to have  a zero curvature if parallel translation between two points is 
independent of the path connecting the two points. Therefore the compatibility 
condition  represents the zero curvature condition for the integrability of the 
nonlinear equation. We find that the two dimensional wavefunction ( , )z tψr  
satisfying  both Eqs. (33) and (34) with the  compatibility condition  is related to 
integrable NLSE. 
 We would like to show now that the above analysis of the 'compatibility 
condition' is in agreement with the one-soliton solution given in the previous 
Section. Let us use 'scaled coordinates'' by which Eq. (23 ) can be written as  
 ( , ) exp( ) sec ( )ca z t A it h z=% %% %   ,    (43) 
where  

  
2

;
2

z KAz t t
ξ

= =%%        (44) 

Using Eq. (34 ) and (39) for time 0t =  and for a scaled coordinate z%  we get  
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 1 1 1

2 2 2

0 ( )( ) ( ) ( )
( ) ( ) ( )( ) 0

u zz z z
M

z z zz u z
ψ ψ ψ
ψ ψ ψ∗

−⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂
= = ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

%
%

% %
 .   (45) 

Eq. (45) is satisfied by substituting  

 1

2

( ) sec ( )
; ( ) sec ( )

( ) tanh(
z h z

u z h z
z z

ψ
ψ
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

%
% %

%
      (46) 

obtaining the agreement: 

 
2

2

sec ( ) tanh( )sec ( )
;

tanh( sec ( )

sec ( ) tanh( )0 sec ( ) sec ( )
sec ( ) 0 tanh( sec ( )

h z zh z
zz h z

h z zh z h z
h z z h z

−⎛ ⎞⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

−− ⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

% %%

%% %

% %% %

% % %

      (47)  

The value of ( )u z%  has been given according to Eq. (43) (at time (t=0))  while 

1

2

( )
( )
z
z

ψ
ψ
⎛ ⎞
⎜ ⎟
⎝ ⎠

 at time 0t =  have been chosen so that Eq. (34) will be satisfied.  

Using Eqs. (33) and Eq. (40) for time t%  and for a scaled coordinate z%  we 
get  

1 1

2 2

2

1

2 2

( , ) ( , )
( , ) ( , )

(sec ( )| sec ( ) | exp( ) ( , )
(sec ( ) ( , )exp( ) | sec ( , ) |

z t z t
H

z t z tt

d h zi h z i it z tdz
d h z z ti it i h z t

dz

ψ ψ
ψ ψ

ψ
ψ

⎛ ⎞ ⎛ ⎞∂
= =⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

⎛ ⎞−⎜ ⎟ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎜ ⎟−⎜ ⎟
⎝ ⎠

%
%

% %%

% %
       .       (48)       

The time development of 1

2

( )
( )
z
z

ψ
ψ
⎛ ⎞
⎜ ⎟
⎝ ⎠

according to Eq. (48) is satisfied by 

substituting  
1

2

( , ) sec ( ) exp( )
tanh( )( , )

z t h z it
zz t

ψ
ψ

−⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

% %% %

% %%
 .       (49)     

   
obtaining the agreement 

2

2

sec ( ) exp( ) sec ( ) exp( )
tanh( ) 0

(sec ( )sec ( ) exp( ) sec ( ) exp( )
(sec ( ) tanh( )exp( ) sec ( , )

h z it i h z it
t z

d h zi h z i it h z itdz
d h z zi it i h z t

dz

− − −⎛ ⎞ ⎛ ⎞∂
= =⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

⎛ ⎞− −⎜ ⎟ −⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎜ ⎟⎜ ⎟
⎝ ⎠

% %% %

% %

% %% %%

% %%

 . (50) 

Here we have used the relations 
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3 2

2 2

sec ( ) exp( ) sec ( ) tanh ( ) exp( ) sec ( ) exp( ) ;
sec ( ) tanh( ) sec ( ) tanh( ) 0

i h z it i h z z it i h z it
i h z z i h z z

− − − − = − −

− + =

% % %% % % %

% % % % .   (51)  

The value of ( , )u z t%  has been given according to Eq. (43) while 1

2

( , )
( , )
z t
z t

ψ
ψ
⎛ ⎞
⎜ ⎟
⎝ ⎠

 have 

been chosen so that Eq. (34) is satisfied 
 
 
6. Summary and conclusions  
 
In the present study we have analyzed QM effects for electromagnetic (EM) 
waves which satisfy the one-soliton solution of NLSE  in a dispersive wave guide 
using quantum optics methods. We have treated one mode of the EM field which 
includes a coupling between momentum and frequencies due to dispersion 
relation. For this purpose a coupled Hamiltonian-Momentum operator with equal-
space commutation relations (CR) has been used. The present treatment of the 
one-soliton state includes QM effects which are developed in analogy with the 
classical theory. By the Kerr interaction a photon number distribution is obtained 
with corresponding quantum phases  

We have analyzed the relation between the integrability of NLSE and the 
compatibility condition by using two equations where one of these equations is 
related to Hamiltonian and the other to Momentum Hermitian operators. It has 
been shown that by choosing special Hamiltonian and Momentum matrices the 
compatibility-condition leads to NLSE.  We have shown the agreement between 
the integrability condition and the one-soliton solution . 
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