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Abstract

The role of nano particles (NPs) behavior in an electromahnetic
(EM) field will increase in the future due to the advent of quantum
electronic devices which is assisted by the increasing sophistication of
fabrication technology. Knowing this behavior in an EM becomes also
necessary for modeling structural properties of nano structured devices.
To understand and predict the physical properties of such devices, new
theoretical view is required.We show how the modified Hamiltonian of
the interactions imposed by the simplified approaches based on envelop
function approximation. Indeed, the aim of this work is a mathemat-
ically rigorous foundation of new approach together with an investiga-
tion of the involved operators ultimately the development of methods
for describing the dynamics of the NPs in an EM.
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1 Introduction

The theoretical description of semiconductor nanostructures is of crucial im-

portance since it allows us both to investigate fundamental physics and to

optimize nanostructure-based devices [1, 2]. Modern applications push nanos-

tructures to dimensions and geometries where the Independent Nano particle
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Approximation (INA) may not be as accurate as necessary [3]. For example,

this is the case of nanometre-scale silicon metal-oxide semiconductor field ef-

fect transistors (MOSFETs) [4, 5, 6]. In this case, oxide dimension, channel

thickness and channel length are such that the application of the INA is highly

questionable. Moreover, the advent of molecular electronics also requires more

sophisticated approaches which treat systems where electrons are well localized

[7, 8, 9, 10, 11, 12].

However NP behavior in an EM has been a topic of great interest in recent

years. This is due to the unique physical properties of NPs such as carbon

nanotubes, quantum dots, and oxide nanorods and their potential for use in

novel devices such as sensors and circuit elements. We should consider that

the description of a realistic nanostructure requires an amount of atoms in

the interaction volume which is related to the dimensionality of the problem.

Typically, a few hundred atoms are needed for systems confined in one di-

mension, such as quantum wells, resonant tunneling diodes, etc, and up to

millions of atoms for three-dimensional (3D) confined (dots) nanostructures.

Similarly, for organic structures such as carbon nanotubes, typically 100-1000

atoms need to be taken into account. Such a high-level description, however,

requires many-body system and the interaction between NPs, which is suit-

able for routine device simulation. It is worth noting that the single orthogonal

wavefunction has a longer range than the atomic orbitals. Thus, interactions

between NP sites have a shorter range (typically a few nearest-neighbor shells)

when many body interactions are taken into account. We indeed studied the

dynamics of these NPs and also modified the Hamiltonian for better describing

of NPs in an EM.

2 Theory

Traditionally, nanostructures are studied via INA approaches in the context

of the envelope function approximation (EFA) [13, 14]. In this case, only the

envelope of the nanostructure wavefunction is described, regardless of many

body interaction details.

Since NPs and nanocrystals lose translational symmetry in all directions,

calculations of electronic and magnetic properties of these nanostructures need

to consider the whole dimension of the system. As in the case of nano struc-

tured materials, the large number of NPs present in an EM has favored NP

assemblies investigations. The most promising approach for NPs in an EM

has been proposed by Maxwell and Schrödinger, but these approaches include
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equations for the envelope functions and approaches in terms of the single

Hamiltonian. We firstly start with the simplest ortognal plane wave descrip-

tion for NPs in terms of

Ĥ = −t
∑
λ

[âλ
†e

ie
h̄c

δiAâλ+δ + c.c.], (1)

where t is the nearest neighbor interaction parameter, â† and â are ris-

ing and lowering operators of NPs, respectively. The vector potential A is

introduced by means of the Peierls substitution [3] as follow

âλ
†âλ → âλ

†e(−ie
h̄c

∫ n

m
Adr)âλ, (2)

It indicates the phase factor e
ie
h̄c

δiA in the interacting term. We keep Plank

constant h̄ and the velocity of light C, but set KB = 1.

By expanding the Hamiltonian and neglecting some higher order in the

vector potential, one has accordingly conclude that the Hamiltonian acquires

the familiar form as follow

Ĥ =
∑
λ

h̄ωλ

(
âλ

†âλ +
1

2

)
, (3)

where

âλ
† =

√
μ0c2

2h̄
ωλ

[
P̂λ

†
(t) +

iωλ

μ0c2
Âλ

†
(t)

]
, (4)

âλ
† =

√
μ0c2

2h̄
ωλ

[
P̂λ(t) − iωλ

μ0c2
Âλ(t)

]
, (5)

the λ subscript indicates the polarization of the electromagnetic field and

the frequency ωλ is given by

ωλ = c|�kλ|, (6)

However, to overcome the limitations of EFA, such as parametrization,

transferability, distance dependence of matrix elements, etc, it would be better

to calculate the matrix elements by starting from the knowledge of the localized

orbitals and the Hamiltonian of NPs. For a given k, the eigenenergies E are

calculated by solving the secular equation

H|E, k〉 = (H + V )|E, k〉 = E|E, k〉, (7)



720 A. Bahari and V. Hayati

where H is the system Hamiltonian and V is the Hartree potential, which

can represent an externally applied potential or the internal potential due to

charge interactions. In the Bloch sum expansion, considering orthonormalized

basis functions, the secular equation reduces to

∑
R′,α′

HR,α;R′,α′CR′,α′ = ECR′,α′, (8)

which needs to be solved with appropriate boundary conditions.

We know the lagrangian (L) and Hamiltonian (H) operators, in that the

conjugate momentum P is

P (r, t) =
∂L

∂q̇(r, t)
, (9)

where q(r, t) is the continues coordinate as function of space and time, and

the Hamiltonian for the full system can be described as follow

H = P (r, t)q̇(r, t) − L, (10)

We define the field equations by using Lagranges equation

∂L

∂q
−

4∑
i=1

∂

∂xi

⎡
⎣ ∂L

∂ ∂q
∂xj

⎤
⎦ = 0, (11)

Therefore

L =
1

2μ0

∫ ( |Â(r, t)|2
c2

+ |∇Â(r, t)|2
)

d3r, (12)

where

[(x1, x2, x3, x4)] = (x, y, z, t), (13)

Having defined the H and P , the momentum of the system p can be written

as

p = −
∫

d3rP (r, t)∇q(r, t), (14)

where p describing the dynamics of the NPs in an EM. This momentum

operator can be derived from Eq.9. The obvious normal modes can thus written

as

A(r, t) =
∑
λ

Aλ(t)�eλe
ikλ.r, (15)
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P (r, t) =
∑
λ

Pλ(t)�eλe
ikλ.r, (16)

However, an alternative way to write the Hamiltonian of a NP in an EM is

obtained by using polorization vector. This method also allows us to introduce

many body interactions mechanism. Let us first write again the Hamiltonian

of system as follow

HNP =
1

2m

(
p − eA

c

)2

, (17)

this in turn can be expand to give

HNP =
|�p|2
2m

+
e2| �A|2
2mc2

− e

2mc
(�p. �A + �A.�P ) = Hfree + Hint, (18)

which gives

[
P̂λ, Âλ′

]
=

h̄

i
δλ,λ′ , (19)

substituting we have

Ĥ =
1

2

∑
λ

[
c2μ0Pλ(t)P

†
λ(t) +

ω2
λ

μ0c2
Âλ(t)Â

†
λ(t)

]
, (20)

The effect of electric fields in nanostructures has been widely described

from internal polarizations. In this sprit, it is helpful to define an internal

polarization vector so that

�A(r, t) = �eAe (�r, t) , (21)

where Ae (�r, t) is the scaler generalized coordinate. Therefore, the general-

ized momentum P
(

��r, t
)

becomes

�P (�r, t) =
∂L

∂A◦ =
A◦

e

μ0c2
, (22)

and the Hamiltonian can now be expressed as

H =
1

2μ0

∫ (
|P (r, t)|2μ2

0c
2 + |∇A(r, t)|2

)
d3r, (23)

or

H =
1

2

∑
λ

[
Pλ(t)P−λ(t)c

2μ0 +
k2

λ

μ0
Aλ(t)A−λ(t)

]
, (24)
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quantization is obtained from

[
Ĥ(r, t), �A(r, t)

]
=

h̄

i
δ(r − r′), (25)

Due to the presence of large fields, the bending of the bands are such that

NPs are confined in a narrow region and this, as for the thin layer perturbation,

calls for a direct use of multi-band treatment. Therefore, the total Hamiltonian

consist of two parts, the Hamiltonian of the individual component and the

interaction Hamiltonian Hint. Now from Eqs. 4 and 5, we have

â†
λ − âλ =

√
μ0c2

2h̄ωλ

2iωλ

μ0c2
(2Aλ(t)) (26)

Aλ(r, t) = A∗
−λ(r, t), (27)

∑
Aλ(t)eλe

ik.r =
∑

A∗
−λ(t)e−λe

ik.r, (28)

kλ = −k−λ, eλ = e−λ, Aλ = A∗
−λ, (29)

a†
−λ − aλ =

1√
μ0c2

i√
h̄

√
2ωλ + Aλ(t) = i

√
2ωλ

h̄μ0c2
Aλ(t), (30)

we can thus write the interaction, remembering that in free space the polar-

ization �eλ is perpendicular to the direction of propagation (in the �kλ direction)

Ĥint = − e

2mc
(�p. �A+ �A.�P ) =

∑
h̄�kλ(a†

λaλ+
1
2
).

1
i

√
h̄μ0c2

2ωj
(a†

−j−aj)+
1
i

√
h̄μ0c2

2ωj
(a†

−j−aj).h̄�kλ(a†
λaλ).

(31)

Here, Hint is the Hamiltonian matrix which describes the interaction be-

tween NP and EM. This interaction phenomenon causes a transmission of NPs

to the higher levels with energy given by the transmission matrix (Hmm −EI)

Γm =

(
H−1

m,m+1(Hm,m − EI) H−1
m,m+1(Hm,m−1)

I 0

)
, (32)

Where Hmm is a Hamiltonian matrix for a NP at (m,m) energy level and I

is a unitary matrix. Therefore, the Schrödinger equation (32) can be expressed

as

(
Cm+1

Cm

)
= Γm

(
Cm

Cm−1

)
, (33)
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Where C is discussed in Eq.8. And the coefficients of the TB expansion at

a point where NPs meet each other, we can write(
CN+2

CN+1

)
=

0∏
m=N+1

Γm

(
Cm

Cm−1

)
, (34)

The main advantage of this approach is the reduction to the solution of a

very small linear system independent of the size of the problem.

3 Conclusion

We could give new and more accurate approach for describing the behavior

of NPs in an EM. The obtained results indicate that the single Hamiltonian

operator can not describe the behavior of NP in an EM. The present modified

Hamiltonian can be used for more details of NP behavior in an EM. We thus

suggest to use this approach for studying the ultra thin film, nano clusters and

NPs interactions.
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