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Abstract 
 

The magnetic potential generated by a circular arc current is calculated. Taking 
gradient operation gives a closed-form expression for the spatial distribution of the 
magnetic induction in terms of elliptic integrals, which is useful for analysis and 
computation. The characteristics of the field distribution are demonstrated. Some 
special cases are discussed, illustrated and numerically computed, including the field 
due to a circular current loop.  
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1. Introduction 
Analytical calculation of the magnetic field is still of interests to the readership[1-3]. 

Compared to the magnetic field of a circular current [4], the spatial distribution of the 

magnetic field generated by a circular arc current is more general and useful, which is 

beyond a textbook problem. The prime motivation of this paper is to obtain a closed 

form expression of the magnetic field produced by a circular arc current. That 

expression is convenient for both theoretic analysis and numerical computation. The 

properties of the field distribution are discussed and illustrated. Moreover, some 

special cases are presented.  
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2. Magnetic potential 

  A circular arc current I with radius a and central angle 0β  is depicted in Fig. 1. 

With cylindrical coordinates the position of point P is denoted as ),,( zϕρ .  

 

O 

a 

X 

Y 

Z

β 

z 

ϕ 

R 

P 

I d 

ρ 

 o 

z(ρ,ϕ,  ) 

l  
Fig.1  A circular arc current 

 

On the arc choose a current element Idl =eβ Iadβ  with angular coordinate β . It 

produces magnetic potential Ad  at P : 
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where R is the distance from P to that current element 
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Introducing transformation )(
2
1 ϕβπ −+=Φ , the ϕ –component of the total 

magnetic potential at P is given by 
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where ),( kF θ  and ),( kE θ  are Legendre elliptic integrals of the first and second 

kinds 
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The ρ –component of the total magnetic potential at P is calculated as 
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Apparently, the total magnetic potential at P has no z-component. That is 

0=zA                           (7) 

 

3. Magnetic induction 

Denote the unit vector on the direction of ρ , ϕ, and z as ϕρ ee ,  and ze , 

respectively. The spatial distribution of the magnetic field due to the arc current could 

be determined through calculating the curl of A[5] 
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Taking the derivative of ),( kF θ  and ),( kE θ  with respect to k  in Eqs.(4), we 

arrive at  
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Using the two above results in Eq.(8 ) we obtain the components of the magnetic 

induction as, after simplifying 
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Obviously, the magnitude of the magnetic induction B at P is 
222
zBBBB ++= ϕρ                                                (13) 

 

4. Advantages for analyzing, computing and plotting 
 

In comparison with the numerical result by direct computations based on Biot-Savart 

law the group of Eqs. (11) has two advantages. First, it is a general analytic solution 

with a closed-form expression for magnetic field of an arc current. It certainly satisfies 

0=⋅∇ B , 0=×∇ B  and 02 =∇ A  in all space except on the arc. To verify it not only 

helps our readership to gasp the main properties of magnetic field but also to arouse 

the interest in applied math. Furthermore, since it has been easy to call the various 

Legendre elliptic integrals in some advanced software such as Mathematica[6] , the 

group of Eqs. (11) is more convenient and intuitive to make a program for 

computation of numerical values and plot of graphical solutions on a PC. Taking the 

field of a half circular current ( πβ =0 ) as an example, we compute the magnitude  
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distribution on the column surface a2=ρ  by using Mathematica. Introducing the 

dimensionless magnitude B
I
ab

0

8
μ
π

= , Fig.2 shows the function of b  versus az /  and 

ϕ .  

 

 Fig. 2  b  versus az /  and ϕ  under the condition of πβ =0 and a2=ρ  

 

5. Special cases 
 

5.1. Along the central axis  

   The distribution of magnetic field along the axis through the center and 

perpendicular to the plane of the arc may be get by letting 0→ρ in Eqs. (11)-(13). 

Employing the expansions of Legendre elliptic integrals and de l’Hôpital law, along 

the central axis we have 
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Eqs.(14) shows that 2/0βϕ =  causes 0=ϕB . It implies that along the central axis the 

direction of B is in the plane determined by the axis and the midpoint of the arc. 
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5.2. In the plane of the arc 

   In the plane of the arc we have 0=z . Thus Eqs. (11) reduce to  
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where the modulus 0k  is the ratio of the geometric mean to the arithmetic mean for a 

and ρ 

 
ρ
ρ

+
=

a
a

k
2

0
                            (18) 

The curve of zb  as a function of ϕ  under the condition of πβ =0  and 0=z  is 

plotted by Mathematica in Fig.3. There are two zero points of zB . Through numerical 

computation we know they are exactly at =1ϕ 3.4051260960033936 and 

=2ϕ 6.01965186476598615 . 

     It will be seen from Eqs.(17) that in finite space all points of 0=B  are in the 

plane of the arc current. Using the command ContourPlot we can ask Mathematica to  

 

 

Fig. 3  zb  versus ϕ  under the condition of πβ =0 and 0=z  

 

 

plot the curve of 0=B  in the plane of a half circular current. The graphic is shown in 

Fig.4.  
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   Fig. 4  The curve of 0=B  in the plane of a half circular current 

                                     

  

5.3. Circular current loop 

Consider the condition for the circular current loop πβ 20 = . The periodicity of 

the integrand in Eqs.(4) leads to[7] 

           )(2),(),( kKkFkF =−+ θθπ ;      )(2),(),( kEkEkE =−+ θθπ     (19) 

where )(kK  and )(kE  are the complete elliptic integrals of the first and second kind, 

respectively. Applying the two above results to Eqs.(11) yields 
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Noticing 
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== EK , along the central axis we get 
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And in the plane of the arc we have 
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Especially, at the central point 
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We have been acquainted with Eqs. (21) and (23) already[8]. 

 

6. Conclusion 
 The spatial distribution of the magnetic field established by an arc current can be 

accurately achieved with the elliptic integrals. That closed-form expression is 

convenient for theoretic analysis and intuitive for numerical computation and plot on a 

PC. The general result contains some typical special cases, including the distribution 

of the field set up by a circular current loop. 

 

References 
 

1. R.Ravaud,  G. Lemarquand,  V. Lemarquand, “Magnetic field created by tile 

permanent magnets”, IEEE Transactions on Magnetics, Vol.45(7), pp. 2920-2926, 

July. 2009.  

2. R. Ravaud,  G. Lemarquand,  V. Lemarquand, C.  Depollier, “Analytical 

calculation of the magnetic field created by permanent-magnet Rings”, IEEE 

Transactions on Magnetics, Vol.44(8), pp. 1982-1989, Aug. 2008.  

3. M.R. Smolkin,  R.D. Smolkin,  E.R.Smolkin,  “Analysis of magnetic fields and 

circuits in separators with plane-parallel and plane-meridian symmetry”, IEEE 

Transactions on Magnetics, Vol.44(8), pp. 1990-2001, Aug. 2008. 

4. R.A. Schill, “General relation for the vector magnetic field of a circular current 

loop: a closer look”, IEEE Transactions on Magnetics, Vol.39(20), pp.961- 967, 

Mar. 2003.  

5. M. Fabbri, “Magnetic flux density and vector potential of uniform polyhedral 

sources”, IEEE Transactions on Magnetics, Vol.44 (1-1), pp. 32-36, Jan. 2008. 

6. S. Wolfram, The Mathematica Book, 3rd ed.,Champaign: Wolfram Media, 1996. 

7. J. V. Armitage, W. F. Eberlein,  Elliptic functions. Cambridge, London, 2006. 

8. D. C. Giancoli, Physics for Scientists and Engineers with Modern Physics, 3rd ed., 

p.615, New York: Prentice Hall, 2000. 

Received: November, 2009 


