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Abstract

We classify the Kronecker products Dj1⊗...⊗Djn of su(2)-multiplets
that are compatible with Heisenberg-Weyl algebras by means of the
analysis of antisymmetric Kronecker products. Alternative formulae for
the decomposition of the latter are obtained.

PACS: 02.20Sv

Keywords: antisymmetric Kronecker product, Lie algebra, Heisenberg-
Weyl algebra

1 Introduction

Kronecker products of irreducible representations of Lie algebras play a key role
in any labelling problem, as well as in the study of the corresponding branching
rules. The problem of decomposing square Kronecker products of irreducible
multiplets of Lie algebras has also become a central tool to explain unsuspected
symmetries behind the vanishing of matrix elements, also known as the prob-
lem of conflicting symmetries [1]. Motivated by these problems, a systematic
program to evaluate Kronecker products and resolve symmetrized powers for
all physically relevant groups was initiated ([1] and references therein). Besides
its wide interest in the labelling problem, symmetric Kronecker products are
also important for the classification of various properties of representations, as
well as for the study of semidirect products of Lie algebras. In particular, the
structure of semidirect products of semisimple and Heisenberg-Weyl algebras
can be determined by using this method.

In this note we extend the analysis of the compatibility problem, as devel-
oped in [2], to the case of arbitrary Kronecker products of irreducible su(2)-
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Table 1: Symmetric Kronecker products of su(2)-multiplets∧2 Dj dim
∧2 Dj Sym2Dj dim Sym2Dj

j = 1
2
, 3

2
, ..

∑2j− 1
2

α=0 D(2j−2α) j (2j + 1)
∑2j− 1

2
α=0 D(2j−2α−1) (j + 1) (2j + 1)

j = 0, 1, 2, ..
∑j−2

α=0 D(2j−2α) j (2j + 1)
∑j

α=0 D(2j−2α) (j + 1) (2j + 1)

multiplets. This will lead to alternative decomposition formulae for the an-
tisymmetric Kronecker products of such representations, as well as for their
decomposition into irreducible multiplets. The corresponding structure con-
stants for the corresponding semidirect products are also found.

To this extent, we will make use of the standard realization of su(2) in
terms of creation and annihilation operators ai, a

∗
j satisfying the commutators

[ai, aj ] =
[
a∗

i , a
∗
j

]
= 0,

[
ai, a

∗
j

]
= δi,j .

The boson realization is given by the operators J0 = 1
2
(a∗

1a1 − a∗
2a2) , J± =

1
2
((1 ± 1) a∗

1a2 + (1 ∓ 1) a∗
2a1) with commutators

[J+, J−] = 2J0, [J0, J±] = ±J±

The (2j + 1)-dimensional (irreducible) multiplets Dj of su (2) are given by
{ |j,m〉 | m = −j,−j + 1, .., j − 1, j}, where the state |j, m〉 is specified by

|j,m〉 =
(a∗

1)
j+m (a∗

2)
j−m√

(j + m)! (j − m)!
|0〉 .

Since the eigenvalues of J0 are always symmetric with respect to zero, it follows
at once that any Dj is self-dual, i.e., isomorphic to its contragredient represen-
tation. As known, for self-dual representations the square Kronecker product
always contains a copy of the identity representation [3]. In particular, for the
Kronecker product of a multiplet with itself we get the decomposition

Dj ⊗ Dj =

2j∑
k=0

D(2j−α) = Sym2Dj ⊕
2∧

Dj. (1)

The corresponding division into symmetric and antisymmetric parts is given
in Table 1.

1.1 Compatibility of multiplets

We convene that for arbitrary multiplets Γ, Γ′ of su (2), the symbol multΓ(Γ′)
denotes the multiplicity of Γ′ in Γ, i.e., the number of copies of Γ appearing the
the decomposition Γ =

⊕
Dj into irreducible multiplets. We call the Dj the
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constituents of Γ. Following [2], we say that a 2N -dimensional representation Γ
of su (2) is compatible with the (2N + 1)-dimensional Heisenberg-Weyl algebra
hN if the constituents Dj of Γ satisfy one of the following conditions1

C1. if Dj ∧ Dj � D0, then multΓ (Dj) is even,

C2. if multΓ (Dj) is odd, then Dj ∧ Dj ⊇ D0.

The compatibility of multiplets in particular implies the existence [2] of a
semidirect product Lie algebra g with Levi decomposition

g = su (2)−→⊕ Γ⊕D0hN , (2)

where D0 = |0, 0〉 is the identity representation. The latter class of algebras is
of wide interest in the context of stability theory of Lie algebras,2 as well as
in the study of boson realizations of Lie algebras [5, 6].

In particular, if we restrict to irreducible multiplets Dj, it follows at once
from Table 1 that only those Dj with half-integer j are compatible with a
Heisenberg-Weyl algebra. For multiplets with integer j, condition C1 should
be used [2]. For direct sums of these multiplets, analogous results hold[2]. It is
therefore natural to ask whether the situation can be generalized to Kronecker
products Γ = Dj1⊗ ...⊗Djn of irreducible multiplets, i.e., under which circum-
stance they are compatible with some Heisenberg-Weyl algebra satisfying the
condition C2. The compatibility problem therefore reduces to the study of the
antisymmetric Kronecker product of Γ and its decomposition into irreducible
multiplets.

Let n = 2 and suppose that j ≥ k. The Kronecker product decomposes as
Dj ⊗ Dk =

∑k
α=0 D(j+k−2α). Using (1), it is easy to derive the decomposition∧2 (Dj ⊗ Dk
)

=
(
Sym2Dj ⊗∧2 Dk

)⊕ (∧2 Dj ⊗ Sym2Dk
)
. Now observe that

in order to satisfy the condition C2, one of the indices must be a half-integer,
while the other must be integer. In particular, this will imply that in the
decomposition of Dj ⊗ Dk into irreducible multiplets, all indices will be half-
integers.

For n = 3, the antisymmetric Kronecker product
∧2 (Dj1 ⊗ Dj2 ⊗ Dj3) has

dimension

d =
((2j1 + 1) (2j2 + 1) (2j3 + 1)) ((2j1 + 1) (2j2 + 1) (2j3 + 1) − 1)

2
.

Using the elementary properties of Kronecker products [3] and equation (1),
we rewrite the product of (Dj1 ⊗ Dj2 ⊗ Dj3) with itself as the direct sum

1In the general case there is a third condition. Since for su (2) all irreducible multiplets
are self-dual, we merely get two constraints.

2The probably best known example of this type is the Carroll Lie algebra in dimension
10 [4].
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⊕3
l=1

(
Sym2Djl ⊗∧2 Djl

)
. Expanding the latter product, it follows that the

terms with an odd number of wedge products are those corresponding to the
antisymmetric Kronecker product. We therefore get

2∧(
Dj1 ⊗ Dj2 ⊗ Dj3

)
=

1

2

∑
σ∈S3

Sym2Djσ(1) ⊗ Sym2Djσ(2) ⊗
2∧

Djσ(3)

⊕ 1

6

∑
σ∈S3

2∧
Djσ(1) ⊗

2∧
Djσ(2) ⊗

2∧
Djσ(3) .

This shows that there are two possible configurations of the indices {j1, j2, j3}
such that the Kronecker product is compatible:

1. the indices j1, j2 are integers and j3 is a half-integer (or some permutation
of {1, 2, 3})

2. the indices j1, j2, j3 are all half-integers.

2 Kronecker products Dj1 ⊗ ... ⊗ Djn

In analogy with the cases n = 2 and n = 3, we can obtain the decomposition
of the arbitrary Kronecker product Dj1 ⊗ ... ⊗ Djn developing the Kronecker
product with the help of decomposition (1), and then expanding the sum. It
is clear that the process is iterative, thus the proof will follow by recurrence.
An alternative way to prove the assertion can be obtained using the Young
diagrams [3].

Lemma 1 For n ≥ 2, the antisymmetric Kronecker product of Dj1 ⊗ ...⊗Djn

decomposes as

2∧(
Dj1 ⊗ ... ⊗ Djn

)
=
∑
σ∈Sn

[n+1
2 ]∑

k=0

1

(2k + 1))! (n − 2k − 1)!
×

Sym2Djσ(1) ⊗ .. ⊗ Sym2Djσ(n−2k−1) ⊗
2∧

Dσ(n−2k) ⊗ .. ⊗
2∧

Dσ(n), (3)

where Sn denotes the symmetric group in n letters.

With the use of formula (3), we can determine easily which configurations
of the indices {j1, .., jn} will lead to Kronecker products Dj1 ⊗ ... ⊗ Djn that
satisfy the compatibility condition C2.
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Lemma 2 Let k = 0, 1, ..,
[

n+1
2

]
. Then

∧2 (Dj1 ⊗ ... ⊗ Djn) contains a copy
of D0 if there exist half-integers jl1 , ..., jl2k+1

∈ {j1, .., jn}, and any other index
jp /∈ {jl1 , ..., jl2k+1

}
is an integer. In particular, for k =

[
n−1

2

]
, we distinguish

two cases according to the parity of n:

1. If n is even, then all j′is but one are half-integers.

2. If n is odd, then all the indices ji are half-integers.

The proof follows at once using the properties of su(2)-multiplets. If jl is
a half-integer, then we have

∧2 Djl ⊃ D0, while for integer indices jl we get
Sym2Djl ⊃ D0. Therefore, for a fixed k = 0, ..,

[
n+1

2

]
, the sum

∑
σ∈Sn

Sym2Djσ(1) ⊗ .. ⊗ Sym2Djσ(n−2k−1) ⊗
2∧

Dσ(n−2k) ⊗ .. ⊗
2∧

Dσ(n)

contains the identity representation only if we can find indices of {j1, .., jn}
such that

Sym2Dj′l ⊃ D0,

2∧
Dj′m ⊃ D0

where l = 1, .., n − 2k − 1 and m = n − 2k, .., n. This implies that {j1, .., jn}
admits a partition into

{
j′1, .., j

′
n−2k−1

}
integers and

{
j′n−2k, .., j

′
n

}
half-integers,

and we can therefore find a permutation σ ∈ Sn such that j′l = jσ(l), j′m = jσ(m).

Since the scalar k can take
[

n+1
2

]
different values, for any n ≥ 2 there will

alsways be
[

n+1
2

]
different configurations of the indices which lead to compat-

ible Kronecker products.

Once having obtained which Kronecker products satisfy condition C2, it re-
mains to obtain the decomposition into irreducible representations. As before,
a long but straightforward computation, using a recursion argument, allows to
obtain the decomposition of Dj1 ⊗ ... ⊗ Djn. It is given by the expression:3

Dj1 ⊗ ... ⊗ Djn =

2j2∑
α2=0

ξ1∑
α3=0

...

ξn−2∑
αn=0

D(j1−α2+...+jn−..−an), (4)

where

ξi = min

{
2

(
i−1∑
β=1

jβ −
i−1∑
ε=2

αε

)
, 2ji

}
. (5)

3Actually this decomposition formula holds for the general case, i.e., for arbitrary indices
{j1, .., jn}.



52 R. Campoamor-Stursberg

In particular, it follows from (4) that the constituents are always multiplets
the indices of which are half-integers. This is a direct consequence of Lemma 2.
In addition, the multiplicity of any multiplet Dk0 occurring in the preceding
decomposition is further obtained as the number of solutions of the linear
system

k0 =

n∑
l=1

jl − α2 − .. − αn, (6)

where α2 = 0, .., .j2 and αi = ξi for i = 3, .., n − 1.

In Table 2, all compatible Kronecker products are given up to dimension
d = 100. In general, for any even number m ≥ 2 there exists an integer n and
irreducible multiplets Djl of su(2) such that Dj1 ⊗ ...⊗Djn is compatible and
has dimension m.

3 Semidirect products of Lie algebras

As we commented before, the classification of compatible representations Γ
allows to construct Lie algebras with the Levi decomposition su (2)−→⊕ Γ⊕D0hN ,
where N = dim Γ. Here we briefly indicate one of the possibilities to do it.
Consider a compatible representation Γ = Dj1⊗...⊗Djn and its decomposition
(4). For any constituent Dj1+..+jn−α we denote its multiplicity by k0. As basis
of Γ can be chosen as

Xm
α,μ := |j1 + .. + jn − α, m〉 , μ = 1, .., k0.

The index μ indicates in which copy of Dj1+..+jn−α the vector is placed. Since
the centre generator M of hN commutes with su (2), the commutation relations
among the vectors Xm

α,μ must have the following form:[
Xm

α,μ, Xm′
α′,μ′

]
= δα′

α δm′
−mM. (7)

Observe that no restriction is made on vector belonging to different copies of
the same multiplet. A special solution to (7) is therefore given if we modify
the commutator by [

Xm
α,μ, X

m′
α′,μ′

]
= δα′

α δm′
−mδμ′

μ M.

In this case, only the generators of each copy of the multiplets in the decom-
position (4) have a non-zero bracket. Evaluating either the Jacobi conditions
or the Maurer-Cartan forms, the structure constants can be found to be

[
Xm

α,μ, X
−m
α,μ

]
=

2 (j1 + .. + jn − α) Γ (2j1 + .. + 2jn − 2α) (−1)j1+..+jn−α−m

Γ (j1 + .. + jn − α + 2 − m) Γ (j1 + .. + jn − α − m)
M,
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where Γ (z) denotes the Gamma function. These algebras constitute a natural
generalization of those analyzed in [2], although other non-isomorphic pos-
sibilities can exists in dependence of the multiplicities of the constituents of
(4).

Concluding remarks

We have obtained the natural generalization of the compatibility problem with
Heisenberg-Weyl algebras for arbitrary Kronecker products Dj1 ⊗ ... ⊗ Djn of
su(2) representations. In particular, the general formula for the antisymmetric
tensor products and its decomposition into irreducible components have been
derived. It has also been pointed out that any compatible multiplet gives rise
to a semidirect product of Lie algebras. Among the various possibilities, that
generalizing naturally those of [2] have been determined.

These results have potential application in the corresponding compatibility
problem for higher rank simple Lie algebras, as well as the systematic study
of the symmetric Kronecker products of their (irreducible) representations.
This case contains quite interesting cases, like the Schrödinger Lie algebras [7].
Another possible application is given by the branching rules for the labelling
problems with respect to su(2) subalgebras [8].
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Table 2: Compatible su(2)-multiplets R of dimension d ≤ 100
R d R d R d R d

D
1
2 ⊗ D1 6 D

3
2 ⊗ D11 92 D

29
2 ⊗ D1 90 D

1
2 ⊗ D

3
2 ⊗ D

5
2 48

D
1
2 ⊗ D2 10 D

3
2 ⊗ D12 100 D

31
2 ⊗ D1 96 D

1
2 ⊗ D

3
2 ⊗ D

7
2 64

D
1
2 ⊗ D3 14 D

5
2 ⊗ D1 18 D

1
2 ⊗ D1 ⊗ D1 18 D

1
2 ⊗ D

3
2 ⊗ D

9
2 80

D
1
2 ⊗ D4 18 D

5
2 ⊗ D2 30 D

1
2 ⊗ D1 ⊗ D2 30 D

1
2 ⊗ D

3
2 ⊗ D

11
2 96

D
1
2 ⊗ D5 22 D

5
2 ⊗ D3 42 D

1
2 ⊗ D1 ⊗ D3 42 D

1
2 ⊗ D

5
2 ⊗ D

5
2 72

D
1
2 ⊗ D6 26 D

5
2 ⊗ D4 54 D

1
2 ⊗ D1 ⊗ D4 54 D

1
2 ⊗ D

5
2 ⊗ D

7
2 96

D
1
2 ⊗ D7 30 D

5
2 ⊗ D5 66 D

1
2 ⊗ D1 ⊗ D5 66 D

3
2 ⊗ D

3
2 ⊗ D

3
2 64

D
1
2 ⊗ D8 34 D

5
2 ⊗ D6 78 D

1
2 ⊗ D1 ⊗ D6 78 D

3
2 ⊗ D

3
2 ⊗ D

5
2 96

D
1
2 ⊗ D9 38 D

5
2 ⊗ D7 90 D

1
2 ⊗ D1 ⊗ D7 90 D

1
2 ⊗ D1 ⊗ D1 ⊗ D1 54

D
1
2 ⊗ D10 42 D

7
2 ⊗ D1 24 D

1
2 ⊗ D2 ⊗ D2 50 D

1
2 ⊗ D1 ⊗ D1 ⊗ D2 90

D
1
2 ⊗ D11 46 D

7
2 ⊗ D2 40 D

1
2 ⊗ D2 ⊗ D3 70 D

1
2 ⊗ D

1
2 ⊗ D

1
2 ⊗ D1 24

D
1
2 ⊗ D12 50 D

7
2 ⊗ D3 56 D

1
2 ⊗ D2 ⊗ D4 90 D

1
2 ⊗ D

1
2 ⊗ D

1
2 ⊗ D2 40

D
1
2 ⊗ D13 54 D

7
2 ⊗ D4 72 D

1
2 ⊗ D3 ⊗ D3 98 D

1
2 ⊗ D

1
2 ⊗ D

1
2 ⊗ D3 56

D
1
2 ⊗ D14 58 D

7
2 ⊗ D5 88 D

3
2 ⊗ D1 ⊗ D1 36 D

1
2 ⊗ D

1
2 ⊗ D

1
2 ⊗ D4 72

D
1
2 ⊗ D15 62 D

9
2 ⊗ D1 30 D

3
2 ⊗ D1 ⊗ D2 60 D

1
2 ⊗ D

1
2 ⊗ D

1
2 ⊗ D5 88

D
1
2 ⊗ D16 66 D

9
2 ⊗ D2 50 D

3
2 ⊗ D1 ⊗ D3 84 D

1
2 ⊗ D

1
2 ⊗ D

3
2 ⊗ D1 48

D
1
2 ⊗ D17 70 D

9
2 ⊗ D3 70 D

3
2 ⊗ D2 ⊗ D2 100 D

1
2 ⊗ D

1
2 ⊗ D

3
2 ⊗ D2 80

D
1
2 ⊗ D18 74 D

9
2 ⊗ D4 90 D

5
2 ⊗ D1 ⊗ D1 54 D

1
2 ⊗ D

1
2 ⊗ D

5
2 ⊗ D1 72

D
1
2 ⊗ D19 78 D

11
2 ⊗ D1 36 D

5
2 ⊗ D1 ⊗ D2 90 D

1
2 ⊗ D

1
2 ⊗ D

7
2 ⊗ D1 96

D
1
2 ⊗ D20 82 D

11
2 ⊗ D2 60 D

7
2 ⊗ D1 ⊗ D1 72 D

1
2 ⊗ D

3
2 ⊗ D

3
2 ⊗ D1 96

D
1
2 ⊗ D21 86 D

11
2 ⊗ D3 84 D

9
2 ⊗ D1 ⊗ D1 90

⊗5
D

1
2 32

D
1
2 ⊗ D22 90 D

13
2 ⊗ D1 42 D

1
2 ⊗ D

1
2 ⊗ D

1
2 8

⊗4 D
1
2 ⊗ D

3
2 64

D
1
2 ⊗ D23 94 D

13
2 ⊗ D2 70 D

1
2 ⊗ D

1
2 ⊗ D

3
2 16

⊗4 D
1
2 ⊗ D

5
2 96

D
1
2 ⊗ D24 98 D

13
2 ⊗ D3 98 D

1
2 ⊗ D

1
2 ⊗ D

5
2 24

⊗3 D
1
2 ⊗ D1 ⊗ D1 72

D
3
2 ⊗ D1 12 D

15
2 ⊗ D1 48 D

1
2 ⊗ D

1
2 ⊗ D

7
2 32

⊗5
D

1
2 ⊗ D2 96

D
3
2 ⊗ D2 20 D

15
2 ⊗ D2 80 D

1
2 ⊗ D

1
2 ⊗ D

9
2 40

D
3
2 ⊗ D3 28 D

17
2 ⊗ D1 54 D

1
2 ⊗ D

1
2 ⊗ D

11
2 48

D
3
2 ⊗ D4 36 D

17
2 ⊗ D2 90 D

1
2 ⊗ D

1
2 ⊗ D

13
2 56

D
3
2 ⊗ D5 44 D

19
2 ⊗ D1 60 D

1
2 ⊗ D

1
2 ⊗ D

15
2 64

D
3
2 ⊗ D6 52 D

19
2 ⊗ D2 100 D

1
2 ⊗ D

1
2 ⊗ D

17
2 72

D
3
2 ⊗ D7 60 D

21
2 ⊗ D1 66 D

1
2 ⊗ D

1
2 ⊗ D

19
2 80

D
3
2 ⊗ D8 68 D

23
2 ⊗ D1 72 D

1
2 ⊗ D

1
2 ⊗ D

21
2 88

D
3
2 ⊗ D9 76 D

25
2 ⊗ D1 78 D

1
2 ⊗ D

1
2 ⊗ D

23
2 96

D
3
2 ⊗ D10 84 D

27
2 ⊗ D1 84 D

1
2 ⊗ D

3
2 ⊗ D

3
2 32


