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Abstract

A method to construct approximate solutions for a quantum me-
chanical system has been introduced in a Bernstein-polynomial (B-
polynomial) basis. The B-polynomial-Galerkin method is applied to
produce the energy spectrum of quantum mechanical system harmonic
oscillator equation. The discrete eigenstates are reproduced after ap-
plying the initial condition to the generalized eigenvalue problem con-
structed from the exact analytic matrix elements. The numerical dis-
crete eigenvalues and the corresponding eigenstates are in excellent
agreement with the exact results of the harmonic oscillator. However,
the accuracy of the results depends on the number of B-polynomials
chosen to construct the approximate solutions. To check the quality of
the spectrum, the resulting basis set is used to evaluate the Thomas-
Reiche-Kuhn (TRK) sum rules. In addition, perturbations through 5%
order are calculated to first excited state of harmonic oscillator using a
perturbation potential and excellent agreement is observed with exact
results.
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Bernstein-Polynomials, Energy Spectrum

1 Introduction

Continuous piecewise polynomials are increasingly becoming useful mathemat-
ical tools in scientific and engineering computations for solving challenging
problems. They are precisely defined, calculated rapidly on a modern PC and
can represent a great deal of functions. They can be differentiated and inte-
grated seemingly, and can be used to form spline curves that can approximate
any function to a desired accuracy. Over the past few decades, the spectral
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methods that involve such polynomials have been successfully used in solv-
ing physics related computations. In particular, the B-splines methods have
been employed to predict atomic structure by several authors. In reference
[5], a method was used for calculating the static Polarizabilities of the ground
and excited states of the hydrogenic systems utilizing the n'* degree B-splines
Galerkin method. The B-splines method created a complete set of basis func-
tions that were used to approximate solutions to the differential equations
depending on the degree n and number (N) of the B-splines defined by the
recursive definition [5],

1 ift. <r< t

0 _ 7T +1

Bi(r) = { 0 otherwise

and (1.1)

Br(r) = (rt) B0 + (i) BI )

The function B*(r) is a piecewise polynomial of degree n defined on a knot
sequence {t;}. The knots defining the grid have (n + 1)-fold degeneracy at the
endpoints of the interval.

It is discovered that when number of B-splines is set to N = n + 1, the set
of B-splines in Eq.(1.1) defined over a knot sequence collapses to a set of con-
tinuous B-polynomials over the entire range. This paper presents a method of
how to construct solutions of harmonic oscillator equation and a spectrum over
a finite interval [a, b] using finite set of B-polynomials. Since B-polynomials
do not depend on the nature of any interior sub-interval points, also known as
knots, the matrix elements are evaluated exactly on the entire region [a, b].
In the following sections, we explain the method for approximations; define
B-polynomials basis and present general formulas ready to be applied to the
harmonic oscillator problem.

2 Polynomial Basis and Explicit Formulas

Our aim is to present solutions of the harmonic oscillator equation on a closed
interval [a,b] with continuous B-polynomials which require no interval grid
points. The details of such polynomials have been provided in an enormous
number of publications [5-10]. As mentioned earlier, a basis of B-polynomials
may be obtained from Eq. (1.1) by setting number of B-splines equal to
n + 1, where n represents the degree of B-splines. The general form of the
B-polynomials of n'" degree over an interval [a, b] is defined in ref.[6]

(" (x —a) (b — )" i<
B n(x) (Z ) b—ar 0<i<n, (2.1)

where the binomial coefficients are given
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( ; ) - #'—T)' (2.2)

There are n+1 n'™ degree polynomials. For convenience we set B;,(z) = 0,
if i <0Oori>n. A simple code written in Mathematica or Maple may be
used to create all the non-zero polynomials of any degree n supported over an
interval. The first and last polynomials are generally related to the Boundary
Conditions of the problem under investigation. The dual basis function for the
Bernstein polynomials basis is given in ref.[11],

Di,n(x) = Z&i,jBi,j(x)a (Zaj = 07 17 ceey n) (23>
7=0

Where the real coefficients «; ; have explicit expression

wmata iy & e () G (I (7))

i J

(2.4)
and the dual basis must satisfy the relationship,
b
(Din(2), Bin(@)) = | Din() Bin(a)do =61, =4 ' =7 (2.5)
LA o o I 0, otherwise ’

Here we list a closed form explicit formulas involving inner products and

derivatives of polynomials:
(Bin(2), Bjm(z)) = v ( ? ) ( ;n ) : (2.6)
(n+m—+1) < nm )

147

2™ B () = ( ? ) i ( % ) Biiknir(T), (2.7)

o amFo—a)k "

(™ Bi (), Bjn(z)) = (b— a) ( " ) ( " ) z; . ( ngi)k ) |
i+

(2.8)

B
Il
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and the p" derivative is given by

DPB; ,(z ZQZ"BZ kn—p(T), (2.9)

n—op n—p
o0 e i) 27
D*B;,,D’B;,) = ———— P P 2.1
( 7,7 j,n) (2n . 2p + 1) ];0 ﬁk ﬁl B 2p 9 ( O)
’ Z+j— —1

where the 3" are expressed as

—_— (=) nl
= () 21

It is also straight forward to work out similar expressions with dual func-

tions to the B-polynomial basis. In the following section, we plan to apply the
explicit formulas to the harmonic oscillator.

3 Method and Harmonic Oscillator

Consider the Harmonic Oscillator Equation,

R d?y 1
———— + K2’y = Ey. 1
2m da? Ty Y (3:-1)
We seek solutions of the equation (3.1) in the closed interval [a, b] with
initial condition y(a) = 0. After Transformation of variables and making

substitutions such as z = \/ar, a = 5%, e = %, andw = /K/m , we obtain
the following equation:

d?y

d2+zy—€y (3.2)

Approximating the function (y) with y(z) = Z ¢; Bin(z) and substitut-
ing this solution in the Eq. (3.2), we take scalar product with B-polynomial
B; »(%)to obtain,

—ci(Bl,, Bjn) + ci(2* Bin, Bjn) = ci€ (Bin, Bin) (3.3)

Using the identity — (B}, Bj.) = (B;

s in> B} ), we may rewrite the equation
(3.3)

ci(Bjp,

B;,)+ ¢i(2* By, Bjn) = ci€ (Bin, Bin) (3.4)
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In Eq.(3.4), the matrix elements have closed forms which are evaluated
using the formulas provided in the previous section:

1 1
aij = (B, Bj,) = > B¢ >0 (Bickn-1,Bj-1n-1)
k=0  i=0

n—1 n—1
(b—a) L n n(l_k><j_l> (35>
2n—1) k;oﬁk Bl

2n — 2 ’
it j—k—1

(

n n = oy ( i)
bi; = (2°Bin, Bjn) = (b—a) ; . Z P ,and
( )(J> ko(2n+k+1)(?+jkk>(3'6)
s = (B By) - oo () () 37

where,

(_1)k+1 1
no 3.8
ﬁk (b . CL) n k ( )
The Eq.(3.4) may be rewritten in the matrix form:

(A+B)C=eDC. (3.9)

Where in Eq. (3.9), the elements of each matrix A, B and D are given in
equations (3.5), (3.6) and (3.7), respectively. The column matrix C represents
expansion coefficients of the approximate solution to the Eq.(3.4) which are
determined solving the generalized eigenvalue problem of Eq.(3.9). We choose
the interval [-5, 5] to create a spectrum of the harmonic oscillator. The wave
functions are expressed as a linear combination of B-polynomials of degree
n = 25. Imposing the initial condition that the wave function must vanish
at y(a) = 0 of interval effectively reduces the number of B-polynomials from
N = 26 to N = 25. The command Eigensystem in Mathematica is called to
compute the eigenvalue problem in Eq.(3.9). The results of eigenvalues are
shown in Table 1. It is obvious from the Table 1, 25 of these eigenvalues grow
from small positive values to large positive values since the potential energy
term is positive. It is worth mentioning that the present calculations are
not based on any particular type of grid; instead integrations are performed
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analytically, and exactly, to evaluate the matrix elements in equations (3.5-
3.7), which are expressed in terms of continuous B-polynomials over the entire
length of the interval [-5, 5]. The low lying energy spectrum is also compared
against exact eigenvalues F,, = (n + 1/2) hw of the harmonic oscillator.
Several tests can be performed to check the quality of the spectrum created
in the B-polynomials basis. A stringent test of the basis is to calculate the
Thomas-Reiche-Kuhn (TRK) sum rule. The TRK sum rule is given by

N
h—“ S (B — Eo)lawol? = 1. (3.10)
k
The Eq.(3.10) may be written in terms of B-polynomial basis (A = pu = 1),
N
2) (Ep— Eo)|Cro M e Cof* = (3.11)
k

Where the column matrix C represents normalized eigenvectors and the
element of Matrix M in Eq.(3.11) are given as

kg gy (1
bz,j:(sz,n,Bj,n):(b—a)(7‘)(7)Zl: v )(’f)

! J k=0(2n+k+1)(?n;k )

(3.12)

The basis set with N = 25 polynomials is generated by solving equation
(3.9). The results of the TRK sum rule are shown in Table 2 and also compared
with the exact result equal to 1. The accuracy of better than one part in 10°
is observed by just summing over the first 8 terms.

Second test of the basis set may be considered to calculate the energy
corrections to the first excited state. Suppose we consider harmonic oscillator
in the first excited state [¢;)with energy F) = 2fiw. We calculate perturbations
of the energy of this state by adding a small perturbation V(z) = g z'to the
potential%K 22, All order iterative perturbation formula is used

a) (o] V(z) TS
rio 3¢ rE (_)Jg ) o1

o

to calculate energy corrections to the first excited state,

= (| V )Té"*”> : (3.14)
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Where ’Tg))> = |¢1). From equation (3.13), the corrections through 5

order perturbations are calculated using the eigenvalues of Table 1 and eigen-
vectors solving equation (3.9). Table 3 represents the results of the perturba-
tions using the basis set with n = 25 polynomials. For perturbation theory to
be valid it is determined that the strength of perturbation must be g = 0.01
to converge as shown in Table 3. It is also seen that only 8 terms in the sum
in Eq.(3.13) were enough to see convergence.

4 Results and Discussion

We have demonstrated a powerful method to solve harmonic oscillator problem
in a B-polynomial basis. Table 1 shows the spectrum of eigenvalues obtained
by the B-polynomials Galerkin method as discussed in sections 2 and 3. As
can be readily seen, the method provides a very accurate approximation of the
solutions of the Schrodinger equation with initial condition. Using closure form
of matrix formalism, the symmetric generalized eigensystem Eq. (3.9) is solved
to provide n eigenvalues and n eigen functions. The present method is for the
first time applied to solve the harmonic oscillator and has been determined to
be faster and more direct to implement.

It is also shown that the quality of the spectrum is superior when calculat-
ing the completeness property and TRK sum rules. The results of the TRK
sum rule converge by just summing over 8 states in Eq.(3.11). The results of
the TRK sum rule are provided in Table 2. In addition we have also carried
out calculations of energies up to 5 order in perturbation theory. A small
perturbation potential is considered to see the effects of perturbation on the
first excited state of the harmonic oscillator. The energy corrections are cal-
culated using Eq.(3.14) and the results up to 5 order of the perturbation are
reported in Table 3. It is noticed that the perturbation expansion is valid if
£ = 0.01. In summary, we have shown that the B-polynomial Galerkin method
returns valid results and is a powerful tool that we may utilize to overcome the
difficulties associated with complex differential systems with much less compu-
tational efforts and cost. This method also provides confidence that it may be
extended to evaluate many-body perturbation expressions for atomic proper-
ties in ref.[12]. All the present calculations are performed using Mathematica
6.0.
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Table 1. Eigenvalues are given of the symmetric generalized eigensystem
equation (3.9). The B-polynomial Galerkin method is used to approximate
the solutions of the harmonic oscillator in the interval [-5, 5] and energies,
E = %‘” e,h=w =1, are calculated using N = 25 polynomials.

State Eigenvalues (E)
1 0.50000000122

2 1.50000000962

3 2.50000061088

4 3.50000167756

5 4.50004454811

6 5.50007583261

7 6.50110361049

8 7.50130018043

9 8.51141522636
10 9.50754248041
11 10.54739424387
12 11.54326795956
13 12.75708173752
14 14.10879344646
15 15.89900809843
16 18.04430700029
17 20.88492827733
18 24.55756295402
19 29.70629164676
20 37.18044950948
21 49.16893966147
22 70.54629558195
23 116.05909100458
24 245.00571205703
25 939.71927997628
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Table 2. The TRK sum rules equations (3.11) are evaluated using harmonic
oscillator finite basis set. The basis is calculated in the interval [-5, 5] and

(h=h=1).

No. of State Exact Calculated | Difference
1 -1.00000000 | -1.00000005 | 0.00000005
2 -1.00000000 | -1.00000005 | 0.00000005
3 0.99999999 | 1.00000138 | 0.00000138
4 0.99999999 | 1.00000138 | 0.00000138
5 0.99999999 | 1.00000138 | 0.00000138
6 0.99999999 | 1.00000138 | 0.00000138
7 0.99999999 | 1.00000138 | 0.00000138
8 0.99999999 | 1.00000138 | 0.00000138

Table 3. The energy corrections to the first excited state of harmonic oscil-
lator are calculated using the equation (3.14) in the perturbation potentialV (z) =
Bx*. We used only 8 eigenvectors of the basis set to achieve this accuracy. The
results are compared with exact results using exact eigen functions of the os-
cillator. uy=h=m=w=1, §=0.01

Order Calculation Exact

E© 1.50000001 1.50000000
EM | 3.74999953 3 3.75000000
E® | -20.6250037 5% | -20.625000032
E®) | 281.60116323° | 281.60156253°
E® | -5127.693155* | -5127.370613*
E®) | 108955.76173° | 108906.85873°
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