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Abstract

This paper proves that electromagnetic fields as produced by charges,
in analogy with gravitational fields as produced by energies, cause space-
time curvatures, not because of the energy contents of the fields but
because of the Coulomb potential of the charges; as a result, we have
derived a special constant of proportionality between an electromag-
netic energy-momentum tensor and Einstein tensor. The geodesics of
the resultant electromagnetic 4-manifold represent the same dynamics
as that given by the classical Lagrangian resulting in the Lorentz force
law of motion.

Mathematics Subject Classification: 53C50, 83C05, 53C80, 83C50,
78A35

Keywords: Einstein field equations, Feynman least action, Lorentzian
manifold, geometrization

1 Introduction

This paper derives Einstein Field Equations (”EFE”) for the classical electro-
magnetism of Maxwell and Poynting. In analogy with

Rμν,grav − 1

2
Rgravgμν,grav = −8πG

c2
Tμν,grav (1)

for gravitation by Einstein, we deduce

Rμν,em − 1

2
Rem · gatt;rep

μν,em = − 16πG(
1 − γ−2

gravg11,grav

)
c5

T att;rep
μν,em (2)
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for electromagnetism. Following Einstein, this treatise makes use of the differ-
ential geometric property of Einstein tensor

Eμυ := Rμν − 1

2
R · gμν (3)

being proportional to energy-momentum tensor Tμν (cf. [3], 858) and applies
weak field approximations (see [1], 814-818) to establish the constant of pro-
portionality κ as based on weakly attractive or repulsive electromagnetic fields
(cf. [9], 151-157 for a derivation of EFE). As such, there will be numerous
”approximately-equal” signs in our derivation of κ.

The significance of our results is that, like gravity, the distribution of
electric charges in space-time results in a 4-manifold M4

em of curvatures and
charges move along geodesics of M4

em, i.e., a geometrization of the electromag-
netic force, which is a step toward a unified field theory (for some of the latest
many attempts, see, e.g., [5, 8]; for related work integrating electromagnetism
with EFE, cf. e.g., [6, 7]).

Section 2 below will first aim at deriving gem (proving that the associated
geodesics are exactly the classical electromagnetic Lagrangian), then Eem, and
finally

E12,em

Eatt;rep
11,em

=
−‖ḡ‖VQ,x

±∥∥S̄∥∥ ≡ T12,em (momentum)

T att;rep
11,em (energy)

, (4)

to obtain

κem =
E11

T11
. (5)

Section 3 will present a summary.

2 The Derivation

Definition 1 The Minkowski space

R
1+3 : = { (t,x ≡ (x, y, z)) ∈ R

4 | the inner product (6)

〈ei, ej〉 : = eT
i ηej, i, j = 1, 2, 3, 4, (7)

η : = diag
(
1,−c−2,−c−2,−c−2

)
E

, (8)

E ≡ (ei ≡ (Kronecker δi1, δi2, δi3, δi4))
4
i=1 , (9)

c ≡ the speed of light in the vacuum}. (10)

Let f : U(0,0) ⊂ R
1+3 −→ M4 be a local parametrization of the space-time

4-manifold M4; we call U the laboratory frame S and the coordinates of the
t − axis the proper times of S, i.e.,

to (S) ≡ (to, 0, 0, 0) ∈ U. (11)
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Remark 1 If M4 = R
1+3, then f = the Lorentz transformation L; L : S −→

S̃ has the following matrix representation if (t, x, y, z) = (0, 0, 0, 0) =
(
t̃, x̃, ỹ, z̃

)
and L (1, V, 0, 0) =

(
t̃o, 0, 0, 0

)
:

L = γ

(
1 − V

c2−V 1

)
(e1,e2)

, (12)

where (V, 0, 0) is the velocity of S̃ relative to S and

γ ≡
(

1 −
(

V

c

)2
)− 1

2

∈ [1,∞) (13)

is the Lorentz factor. Consider an emission of light at to = 0 = t̃o in the
direction of V ∈ R; then ∀to, t̃o > 0 S observes (to, toc) and S̃ observes

(
t̃o, t̃oc

)
;

further,

L (to, toc)
T = γ

(
1 − V

c

)
· (to, toc)T =

(
t̃o, t̃oc

)T
; (14)

thus,
t̃o
to

= γ

(
1 − V

c

)
= λ, an eigenvalue of L. (15)

Note that

γ

(
1 − V

c

)
· γ
(

1 +
V

c

)
= 1; (16)

i.e., L has two eigenvalues

λmax = γ

(
1 +

|V |
c

)
> 1, and (17)

λmin = γ

(
1 − |V |

c

)
< 1. (18)

Remark 2 In the above, if V = 0, then L = I; consider now V (t) ≡ 0 ∀t ∈
(−∞, 0] but

∀t ∈ (0, T ] V (t) ≈ at (19)

for some T > 0 and some constant acceleration a > 0,

due to the existence of some force. Then

λ =
t̃o
to

= γ (t)

(
1 − V (t)

c

)
(20)

measures the curvatures of M4 over (0, T ] ;

this treatment of λ will be assumed hereafter.
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Since V (t) > 0 on (0, T ], we have

λ =

√
c − V (t)

c + V (t)
< 1; (21)

by well established observations such as particles of fleeting existence can nev-
ertheless gravitate from space to Earth to be observed, we deduce that λ < 1 for
attractive forces; by a reversal of time in the preceding dynamics, we deduce
that λ > 1 for repulsive forces. We will thus make the following distinction
and notation:

λatt : = γ

(
1 − |V |

c

)
< 1, and (22)

λrep : = γ

(
1 +

|V |
c

)
> 1. (23)

Further, note that ∀ (V
c

) ≈ 0, one uses

mo

λatt
≈ moγ and (24)

mo

λrep
≈ moγ

−1 (25)

for (Special) relativistic adjustment of a mass. Also, a metric g on M4 by
definition is such that

g11 =

(
t̃o
to

)2

= (λatt; rep)
2 ≈ λ±2

att. (26)

Remark 3 Let p1, p2 ∈ M4; then a maximization of

∫ f−1(p2)

f−1(p1)

dt̃o
dto

dto (27)

over all trajectories {(t, x (t) , y (t) , z (t))} derives the geodesic from p1 to p2

maximizing the proper time elapsed in S̃.

Proposition 1 Let g be a local metric of M4 and express g as a matrix in

the basis of B ≡
{

∂f
∂t

, ∂f
∂x

, ∂f
∂y

, ∂f
∂z

}
; if f ≈ L (i.e., M4 is near flat), then

dt̃o
dto

= (1, 0, 0, 0) gB (∓1,Vx,Vy,Vz)
T . (28)
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Proof. Without loss of generality, consider

L = γ

(
1 ±V

c2±V 1

)
(29)

and calculate (1, 0) gB (∓1,V)

= (1, 0)
((

L−1
)T)−1 [(

L−1
)T

gB L−1
]

L (∓1,V)T (30)

≈ (1, 0)

(
γ

(
1 ±V

±V
c2

1

))(
1 0
0 − 1

c2

)( ∓γ−1

0

)
(31)

= (γ,±γV)

(
Δt̃o
0

)
(observe that L : (∓1,V)T 
−→ (

Δt̃o, 0
)T

, (32)

where Δt̃o equal to ∓ γ−1 is the proper time of S̃ by definition)

=
Δt̃o√

1 − (V
c

)2 =
Δt̃o∥∥∥(∓1,−V)T

∥∥∥
η

=
Δt̃o∥∥∥L−1 (∓1,−V)T

∥∥∥
η

(33)

=
Δt̃o

(∓γ−1, 0)
=

Δt̃o
Δto

≈ dt̃o
dto

, (where L−1 : (∓1,−V)T 
−→ (Δto, 0)T , (34)

analogous to the above Equation (32) ).

The Setup - -
We consider the dynamics of a charge Q at (0, 0, 0, 0) ∈ U that attracts

or repels a charge q at (0, x, y, z) ∈ U , where

r∞ ≡
√

(x2 + y2 + z2) is such that r−1
∞ ≈ 0. (35)

Theorem 1 (Feynman [2], II-28-2) The field momentum produced by Q is

P (t) =
Q2

4πεoroc2
VQ (t) , (36)

where εo ≡ the permittivity constant ≈ 1
9×4π

× 10−9 × coulomb2·second2

kilogram·meter3
, ro ≡

the ”classical electron radius” ≈ 2.82 × 10−15 meter, and VQ (t) << c is the
velocity of Q at t.

Remark 4 We note that the above Equation (36) was derived in [2] by an
integration over the (continuous) field energy densities (cf. [2], II-28-2 and
II-8-12). Thus, to apply Equation (36) to the above Setup of exactly two
(discrete) point charges, we must have

Q = q = the smallest charge = an electron. (37)



1018 G. L. Light

Definition 2

The average field momentum density ḡ (t) := P (t) /

(
4πr3

∞
3

)
. (38)

Theorem 2 (Feynman [2], II-27-9) The Poynting vector S is related to the
momentum density g by

g =
1

c2
S. (39)

Corollary 1

P (t) =

(
4πr3

∞
3

)
ḡ (t) (40)

=

(
4πr3

∞
3

)
S̄ (t)

c2
. (41)

where S̄ (t) ≡ the average field energy flow in the direction (42)

of VQ (t) , with unit equal to

(
joule

second · meter2

)
. (43)

Theorem 3 (Feynman [2], II-27-11: Conservation of the total momentum of
particles and field)

P (t) ≡ mQ,oVQ (t) = −mq,oV (t) , (44)

where mQ,o and mq,o are respectively the rest masses of Q and q.

Remark 5 For the above theorem, the laboratory frame S is set to move at
the constant velocity V̄ so that mQ,oVQ (t) + mq,oV (t) = 0, where

V̄ =
mQ,oVQ (t) + mq,oV (t)

mQ,o+mq,o

. (45)

Remark 6 The Newton’s law of motion as adjusted for the effect of Special
Relativity is

Fatt; rep =
(
γ±1mo

) (
γ±2a

)
(46)

respectively for attractive and repulsive force Fatt; rep if a is in the direction of
V (cf. [4], Equation (13.31), 272-273; also, Equations (24),(25) above).
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Proposition 2 Let v (t) := ‖V (t)‖ and vQ (t) := ‖VQ (t)‖; then

γ±2

(
v (t)

c

)
=

the electric potential energy PEe of Q and q

the rest energy RE of q
. (47)

Proof. By Theorems 1 and 3,(
v (t)

c

)
=

(
1

mq,oc2

)
· q
(

Q

q

vQ (t)

c

r∞
ro

)
· Q

4πεor∞
(48)

≡ 1

RE
· K · qQ

4πεor∞
, (49)

where

K ≡ Q

q

vQ (t)

c

r∞
ro

=
vQ (t) · ( r∞

c

)
ro

(cf. Remark 4) (50)

is an electrodynamic adjustment factor of the electrostatic potential (cf. [2],
II-15-14, 15);

K = 1 if vQ (t) ·
(r∞

c

)
≈ vQ ·

(r∞
c

)
= ro, (51)

i.e., the point charge Q travels to the boundary of the ”classical electron,” or
equivalently, Q is a stationary electron. Thus, taking into account the effect
of Special Relativity, we have

γ±2

(
v (t)

c

)
=

γ±2KQq

RE
=

PEe

RE
. (52)

Corollary 2

−γ±2

(
v (t)

c

)(
v (t) vQ (t)

c2

)
=

qV (t) · A (t)

RE
, (53)

where A (t) := the vector potential, or curl A (t) = the magnetic field B.

Proof. Since

−v (t) vQ (t) = V (t) ·VQ (t) and (54)

γ±2KQVQ (t)

4πεor∞c2
= A (t) ( [2] , II-14-4), (55)

we have

−γ±2

(
v (t)

c

)(
v (t) vQ (t)

c2

)
(56)

=
γ±2KQ qV (t) · VQ (t)

RE · 4πεor∞c2
=

qV (t) · A (t)

RE
. (57)
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Definition 3 We call an electromagnetic field attractive if the total potential
energy is negative, and repulsive if the total potential energy is positive.

Proposition 3 For any weakly attractive or repulsive electromagnetic field,
the metric gatt; rep

em has the following matrix representation in the basis of B
(refer to Proposition 1 above):

gatt; rep
em =

⎛
⎜⎜⎜⎝

λ±2
em −2γ±2vQVx

c3
−2γ±2vQVy

c3
−2γ±2vQVz

c3

−2γ±2vQVx

c3
o
(

v
c

)− c−2 o
(

v
c

)3
o
(

v
c

)3
−2γ±2vQVy

c3
o
(

v
c

)3
o
(

v
c

)− c−2 o
(

v
c

)3
−2γ±2vQVz

c3
o
(

v
c

)3
o
(

v
c

)3
o
(

v
c

)− c−2

⎞
⎟⎟⎟⎠ . (58)

Proof. First, we note that besides being symmetric, gatt; rep
em −→ η, as V,VQ −→

0. Second,

gatt; rep
11,em = λ±2

em =

(
t̃o
to

)2

att; rep

(cf. Equation (26) ). (59)

Third, by Proposition 1 we have

dt̃o
dto

= (1, 0, 0, 0) gB (∓1,Vx,Vy,Vz)
T (60)

= ∓λ±2 − 2γ±2vQv2

c3
(61)

≈ ∓γ±2

(
1 ∓ 2v

c

)
+

2qV · A

RE
(by Corollary 2) (62)

≈ ∓
(

1 ±
(v

c

)2
)

+
2 (PEe + qV · A)

RE
(by Proposition 2) (63)

= ∓1 − mov
2

moc2
+

2 (PEe + qV · A)

RE
(64)

= ∓1 − 2 (kinetic energy KE − PEe − qV · A)

RE
, (65)

which is equivalent to Feynman’s least action for the classical electrodynamics
([2], II-19-7).

Corollary 3 The Einstein tensor

Eatt; rep
em ≈

⎛
⎜⎜⎜⎜⎝

∓ 6v
r2
kc

−6vQVx

r2
kc3

−6vQVy

r2
kc3

−6vQVz

r2
kc3

−6vQVx

r2
kc3

−O
(
r−2
k

)
O
(
r−2
k c−4

)
O
(
r−2
k c−4

)
−6vQVy

r2
kc3

O
(
r−2
k c−4

) −O
(
r−2
k

)
O
(
r−2
k c−4

)
−6vQVz

r2
kc3

O
(
r−2
k c−4

)
O
(
r−2
k c−4

) −O
(
r−2
k

)

⎞
⎟⎟⎟⎟⎠

B

. (66)
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Proof. Eμυ := Rμν − 1
2
R · gμν; ∀M4 ≈ R

1+3 we have

(Rμν) ≈ diag

(
− 3

r2
K

,− 1

r2
K

,− 1

r2
K

,− 1

r2
K

)
and (67)

R ≈ − 6

r2
K

, (68)

where rK ≡ the radius of sectional curvatures (cf. [3], 860; [9], 154). Thus,
substituting Equation (58) into (gμν) in (Eμυ), we arrive at the conclusion.

Lemma 4 Let
m̄q,o ≡ mq,o

(4πr3∞/3)
; (69)

then

m̄q,or
2
∞ ≈ (1 − γ−2

gravg11,grav

) · 3c2

8πG
, (70)

where

g11,grav ≈ λ2
grav ≈ γ2

grav

(
1 − 2Vα

c

)
, (71)

with Vα ≡ the radial velocity (> 0) of any arbitrary particle α gravitating
toward q at a distance of r∞, and G ≡ the universal gravitational constant.

Proof.

g11,grav ≈ λ2
grav ≈ γ2

grav

(
1 − 2Vα

c

)
(refer to Equation (26) ) (72)

≈ γ2
grav

(
1 − 2aαt

c

)
(cf. Remark 2) (73)

= γ2
grav

(
1 − 2Gm̄q,o

r2∞c
· 4πr3

∞
3

· r∞
c

)
; (74)

thus,

m̄q,or
2
∞ ≈ (1 − γ−2

gravg11,grav

) · 3c2

8πG
. (75)

Remark 7 The above lemma expresses the gravitating mass density of q in
terms of its effect on M4 as measured by g11,grav; by the principle of equiva-
lence, m̄q,o is also the inertial mass density, and in the next theorem m̄q,o is to
be treated as such. Also, note that as r−1

∞ −→ 0, we have
∣∣r−2

∞ − r−2
K

∣∣ −→ 0.



1022 G. L. Light

Theorem 5

Eatt; rep
μν,em := Rμν,em − 1

2
Rem · gatt; rep

μν,em = − 16πG(
1 − γ−2

grav · g11,grav

)
c5

T att; rep
μν,em . (76)

Proof.
E12,em

Eatt; rep
11,em

= ± 1

c2

(vQ

v

)
Vx (by Equation (66) ) (77)

= ± 1

c2
·
(

mq,o

mQ,o

)
·
(
−mQ,o

mq,o

VQ,x

)
(by Equation (44) ) (78)

=
−‖S̄‖

c2
VQ,x

±∥∥S̄∥∥ =
−‖ḡ‖VQ,x

±∥∥S̄∥∥ (by Equation (41) ) (79)

≡ T12,em

T att; rep
11,em

, (80)

where T att; rep
11,em and T1j,em, j = 2, 3, 4, are respectively the energy-flow and the

momentum densities. Thus,

Eatt; rep
em = κemT att; rep

em has (81)

κem =
Eatt; rep

11,em

T att; rep
11,em

= ∓ 6v

r2
kc

/ ± ∥∥S̄∥∥ (by Equations (66) , (80) ), (82)

but ∥∥S̄∥∥ =
3c2

4πr3∞
· mq,ov (by Equations (41) , (44) ), (83)

so

κem = − 6

r2
Kc

· 4πr3
∞

3c2mq,o

(84)

= − 6

r2∞c
· 1

c2m̄q,o

(cf. Remark 7) (85)

= − 6

c3
· 8πG(

1 − γ−2
gravg11,grav

) · 3c2
(by the above Lemma) (86)

= − 16πG(
1 − γ−2

grav · g11,grav

)
c5

. (87)

Remark 8 T att; rep
11,em ≡ ±∥∥S̄∥∥ has unit (recalling from Equation (43))

joule

second · meter2
(88)

=
kilogram · meter2

second2
· 1

second · meter2
(89)

=
kilogram

second3
, (90)
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so that
(
κem · T att;rep

11,em

)
has unit

=
[G]

[c5]
· kilogram

second3
(91)

=
meter3

kilogram · second2
· second5

meter5
· kilogram

second3
(92)

=
1

meter2
=

[
1

r2
k

]
, (93)

measuring the local curvatures of M4
em. We emphasize that our T11,em repre-

sents energy flows in a specific direction across an area of square meter per
second, which is different from the common identification of T11,em with sta-
tionary energy densities with unit: [joule/ (meter3)] (see, e.g., [9], 45, equation
(2.8.10)).

3 Summary

As Feynman indicated ([2], II-19-8,9), the least action in quantum electrody-
namics is the same as that of the classical; in this paper we have shown that
the classical least action is a geodesic of our M4

em; thus, we have contributed
a geometric underpinning of both the classical and quantum electrodynamics.

4 References

[1] A. Einstein, Die Grundlage der allgemeinen Relativitätstheorie,
Annalen der Physik, 49 (1916), 769-822.

[2] R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman
Lectures on Physics, Addison-Wesley, Reading, 1963.

[3] G.L. Light, A clear logic of Einstein field equations, Int. J.
Appl. Math, 20 No. 6 (2007), 843-866.

[4] M.S. Longair, Theoretical Concepts in Physics, Cambridge
University Press, Cambridge, 1986.

[5] D.R. Lunsford, Gravitation and electrodynamics over SO(3,3),
Int. J. Theo. Phys., 43 No. 1 (2004), 161-177.

[6] R.K. Sachs and H. Wu, General relativity and cosmology,
Bull. Amer. Math. Soc. 83 (1977), 1101-1164.



1024 G. L. Light

[7] J. Smoller, A. Wasserman, S.T. Yau and B. McLeod, Smooth
static solutions of the Einstein-Yang/Mills equation, Bull. Amer.
Math. Soc. 27 (1992), 239-242.

[8] I. Suhendro, A unified field theory of gravity, electromag-
netism, and the Yang-Mills gauge field, Prog. Phys., 1 (2008),
31-37.

[9] S. Weinberg, Gravitation and Cosmology, Principles and Ap-
plications of the General Theory of Relativity, Wiley, New York,
1972.

Received: August, 2008


