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Abstract

This paper proves that electromagnetic fields as produced by charges,
in analogy with gravitational fields as produced by energies, cause space-
time curvatures, not because of the energy contents of the fields but
because of the Coulomb potential of the charges; as a result, we have
derived a special constant of proportionality between an electromag-
netic energy-momentum tensor and Einstein tensor. The geodesics of
the resultant electromagnetic 4-manifold represent the same dynamics
as that given by the classical Lagrangian resulting in the Lorentz force
law of motion.
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1 Introduction

This paper derives Einstein Field Equations ("EFE”) for the classical electro-
magnetism of Maxwell and Poynting. In analogy with

1 G

Ryl/,grav - iRgravguu,grav = - C2 Tyl/,grav (1>

for gravitation by Einstein, we deduce

1 167G
R v.em ~ _Rem : gag;ecfzp = - T(Llité:;ip (2>
g 2 " (1- Vgrivgll,gmv) >
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for electromagnetism. Following Einstein, this treatise makes use of the differ-
ential geometric property of Einstein tensor

1
g/w = R;w - QR *Guy (3>

being proportional to energy-momentum tensor 7, (cf. [3], 858) and applies
weak field approximations (see [1], 814-818) to establish the constant of pro-
portionality s as based on weakly attractive or repulsive electromagnetic fields
(cf. [9], 151-157 for a derivation of EFE). As such, there will be numerous
"approximately-equal” signs in our derivation of .

The significance of our results is that, like gravity, the distribution of
electric charges in space-time results in a 4-manifold MZ = of curvatures and
charges move along geodesics of M? i.e., a geometrization of the electromag-
netic force, which is a step toward a unified field theory (for some of the latest
many attempts, see, e.g., [5, 8]; for related work integrating electromagnetism
with EFE, cf. e.g., [6,7]).

Section 2 below will first aim at deriving g, (proving that the associated
geodesics are exactly the classical electromagnetic Lagrangian), then &, and
finally

E12.em _ - 18l Vo, _ Tzem (momentum) n
Ein’ £|[S|  TST (energy)
to obtain e
11
Rem = /- 5}
M (5)

Section 3 will present a summary.

2 The Derivation

Definition 1 The Minkowski space

R o ={(t,x = (z,9,2)) € R | the inner product (6)
(e;e;) : =ejnej, i,j=1,234, (7)
n = diag (1, —c 2, =72, —0_2)E , (8)

E = (e = (Kronecker 6;1, 0, i3, 0i4))i_y 9)

¢ = the speed of light in the vacuum}. (10)

Let f : Upo C R — M?* be a local parametrization of the space-time
4-manifold M*; we call U the laboratory frame S and the coordinates of the
t — axis the proper times of S, i.e.,

t, (S) = (t,,0,0,0) € U. (11)
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Remark 1 If M* =R, then f = the Lorentz transformation L; L : S —
S has the following matrixz representation if (t,x,y, z) = (0,0,0,0) = (f, 7,7, 5)
and £ (1,V,0,0) = (£,,0,0,0):

L= 1 -z (12)
AN A S

where (V,0,0) is the velocity of S relative to S and

vz<1—(%)j_ & [1,00) (13)

is the Lorentz factor. Consider an emission of light at t, = 0 = t, in the
direction of V€ R; then Vt,,t, > 0 S observes (t,,t,c) and S observes (to, toc) ;
further,

=

Vv ~ .
L (to,toe)" =~ (1 - —) (tor to0)” = (ForToe)” (14)
c
thus, 3
to Vv ,
=7 (1 — —) = )\, an eigenvalue of L. (15)
o c
Note that

7(1—%).7(1+%):1; (16)

1.e., L has two eitgenvalues

Vv
Amax = 7 (1 + %) > 1, and (17)
Amin = 7< - @) <1 (18)

Remark 2 In the above, if V. =0, then L = I; consider now V (t) =0 Vt €
(—o0, 0] but

Vi € (0,T] V(t)~at (19)
for some T > 0 and some constant acceleration a > 0,
due to the existence of some force. Then
to V(t
v = e (-2 (20)
o c

measures the curvatures of M* over (0,T];

this treatment of X\ will be assumed hereafter.
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Since V (t) > 0 on (0,T], we have

_ fe=V (1) '
A= TV(t)<1’ (21)

by well established observations such as particles of fleeting existence can nev-
ertheless gravitate from space to Farth to be observed, we deduce that A < 1 for
attractive forces; by a reversal of time in the preceding dynamics, we deduce
that A\ > 1 for repulsive forces. We will thus make the following distinction
and notation:

v

Aatt @ =7 ( — %) <1, and (22)
Vv

Arep 1 =7 (1 + %) > 1. (23)

Further, note that ¥ (%) ~ 0, one uses

Mo

~ myy and (24)
)\att
Mo .

X om, 25
ey, S (25)

for (Special) relativistic adjustment of a mass. Also, a metric g on M* by
definition is such that

~ (2
to
o= (t_) - (/\att; Tep)2 ~ )‘«jztt% (26)

Remark 3 Let p;,p, € M?*; then a mazimization of

F~p2) dt
/ —2dt, (27)
f=1(p1) dt,

over all trajectories {(t,z (t),y (t),z(t))} derives the geodesic from py to py
mazimizing the proper time elapsed in S.

Proposition 1 Let g be a local metric of M* and express g as a matriz in

the basis of B = {%, %, g—g, %}; if f~L (i.e., M* is near flat), then

di,
7= (1,0,0,0) g5 (F1,V,V,, V)" (28)
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Proof. Without loss of generality, consider

1 +Y
L=~ ( TRV ) (29)
and calculate (1,0) gg (F1,V)

~ (1,0) <(L1)T>_1 [(L*l)T } L(F1, V)" (30)

(L )G ) ()

= (v,+7V) ( Aoto ) (observe that L : (F1, V)" — (AEO,O)T, (32)

Q

—~

31)

where Af, equal to F~~ ' is the proper time of S by definition)
At At At
= 9 = i = 9 (33)
S [ A R I T e Ol
At, At, dt,
= G0~ AL S @ (vhere LT (FL V)T e (A4, 07, (34)

analogous to the above Equation (32) ).

n

The Setu
We consider the dynamics of a charge @) at (0,0,0,0) € U that attracts
or repels a charge ¢ at (0,z,y,2) € U, where

Too = \/ (22 + y2 + 22) is such that r ' ~ 0. (35)

Theorem 1 (Feynman [2], 1I-28-2) The field momentum produced by Q is

Q?
P(t) = ——=Vqo(t), 36
) = s Va ®) (36)
where €, = the permittivity constant ~ 5= x 1077 x —ﬂ?ﬁégﬁi;ﬁggf‘f, To =

the “classical electron radius” ~ 2.82 x 107 meter, and Vg (t) << c is the
velocity of Q) at t.

Remark 4 We note that the above Equation (36) was derived in [2] by an
integration over the (continuous) field energy densities (cf. [2], II-28-2 and
II-8-12). Thus, to apply Equation (36) to the above Setup of exactly two
(discrete) point charges, we must have

QQ = q = the smallest charge = an electron. (37)
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Definition 2

4 3
The average field momentum density g (t) .= P (t) / ( W;“) . (38)

Theorem 2 (Feynman [2|, 1I-27-9) The Poynting vector S is related to the
momentum density g by

1

Corollary 1

47rrgo _
= g
P (1) ( ) (t) (40)

3
4rd \ S (t)
( 3 ) CQ ( )
where S (t) = the average field energy flow in the direction (42)

_ _ joule
. (4
of Vg (t), with unit equal to (second~ meteﬂ) (43)

Theorem 3 (Feynman (2|, II-27-11: Conservation of the total momentum of
particles and field)
P (t) =mg,Vo (t) = —my,V (1), (44)

where mq, and my, are respectively the rest masses of () and q.

Remark 5 For the above theorem, the laboratory frame S is set to mowve at
the constant velocity V' so that mg Vg (t) +mg,V (t) = 0, where

mQ.oVaq (t) +mgoV (1)

mQ7O+mq7O

v:

(45)

Remark 6 The Newton’s law of motion as adjusted for the effect of Special
Relativity is
Fatt; rep _ (,.)/:I:lmo) (”yﬁa) (46)

respectively for attractive and repulsive force FU% ™P if a is in the direction of
V (¢f. [4], Equation (13.31), 272-273; also, Equations (24),(25) above).
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Proposition 2 Let v (t) := ||V (t)|| and vg (t) == ||Vg (t)||; then

1o (v (t)\ _ the electric potential energy PE, of Q and q (47)
7 c N the rest enerqgy RE of q '
Proof. By Theorems 1 and 3,
v (t 1 Q vo (1) rso Q
() = () 1 (575) @
c Mg oC q ¢ T 4T€,T o0
1 qQ
= — . K- 4
RE ATE oo (49)
where
t t) - (==
K= Quel)rs _ve® () (cf. Remark 4) (50)

q (& TO TO
is an electrodynamic adjustment factor of the electrostatic potential (cf. [2],

[1-15-14, 15);
K =1ifvg (t) - (rﬁ) ~vg - (L”) = o, (51)
c c
i.e., the point charge @) travels to the boundary of the ”classical electron,” or
equivalently, @) is a stationary electron. Thus, taking into account the effect

of Special Relativity, we have

o (L) 2y Pr 52
]
Corollary 2
e (Uit)) (U (t);cz (t)) _aVv (ZEA (t)7 (53)

where A (t) := the vector potential, or curl A (t) = the magnetic field B.

Proof. Since

—v(t)vg(t) = V() Vg(t) and (54)
% A(t) ([2], I1-14-4), (55)
we have o
e (1) (2012 ) 50
T2KQ qV () Vo (t) _ V(1) A )
RE - 4me, rooc? RE
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Definition 3 We call an electromagnetic field attractive if the total potential
enerqy is negative, and repulsive if the total potential enerqgy is positive.

Proposition 3 For any weakly attractive or repulsive electromagnetic field,
the metric g@% ™ has the following matriz representation in the basis of B
(refer to Proposition 1 above):

A2 29200V, 2920V, 29F 20V,
A PN 03 03
gt rer —% O(E)U—SC i(z) B 0(5)3 . (58)
—Ti%vz 0(5)3 0(;)0—30 3(;) B
T8 o (%) o (%) o(¥)—c

Proof. First, we note that besides being symmetric, g%% ™ — n,as V, Vg —
0. Second,

2\ 2
to .
gt = N52 = (—) (cf. Equation (26)). (59)
to att; rep
Third, by Proposition 1 we have
dt, T
% - (17070’0) gB (:F17V$7Vy7VZ) (6())
2,.Y:|:20 ’U2
— +2 Q
2 2qV - A
~ FAH (1 F %]) + qRE (by Corollary 2) (62)
2 2(PE.+qV -A
~ T (1 + (%) ) + ( ;_Eq ) (by Proposition 2)  (63)
mev?  2(PE,+qV - A)
= F1-— 64
+ M2 + RE (64)
I 2 (kinetic energy l‘;g — PE, — ¢V - A)7 (65)

which is equivalent to Feynman’s least action for the classical electrodynamics
([2], II-19-7). m

Corollary 3 The Finstein tensor

Fo kg Mg S
6B 00 (et 0 (e
gatts rep 6;« c\ﬁ‘, (Tk ) T i Tli C_ (66)
r%cg’y O(ri%ct) —0(r.%) O (r ™)
—SE 0(e) 00! —0(7Y) /,
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Proof. £,, := R, — iR g,,; YM* =~ R we have

3 1 1 1
R,) ~ diag | ——,——,——, —— d 67
()~ diog (=) o
6
R~ ——, (68)
'k

where rx = the radius of sectional curvatures (cf. [3], 860; [9], 154). Thus,
substituting Equation (58) into (g,,) in (£,.), we arrive at the conclusion. m

Lemma 4 Let

_ Mg.o
o = ———; 69
M0 = (e J3) \69)
then
-2 -2 3¢?
MgoT o ~ (1 - P)/gravgll,grav) ' %7 (70)
where
2 2 2Va
gll,gr(w ~ )\g'y’aq} ~ ,y‘q'r’aq) ]‘ - c ) (71>

with V, = the radial velocity (> 0) of any arbitrary particle « gravitating
toward q at a distance of v, and G = the universal gravitational constant.

Proof.

2V, .
i1 grav = )\zmv ~ ’Ysmv (1 — —) (refer to Equation (26)) (72)

c
2a,t
R Yo (1— ; ) (cf. Remark 2) (73)
2G'm Arrd  r
2 q,0 o0 o0
= 1-— . — 74
Vgrav ( Tgoc 3 c ) ) ( )
thus,
_ _ 3c?
Maolse & (1= Vganditgrav) - Fral (75)
[]

Remark 7 The above lemma expresses the gravitating mass density of q in
terms of its effect on M* as measured by g1 grav; by the principle of equiva-
lence, my, 15 also the inertial mass density, and in the next theorem my, is to

be treated as such. Also, note that as rZ} — 0, we have [r 2 —

-2
= TK’—>0.
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Theorem 5

1
att; rep .__ att; rep __
Enm® = Rw/,em - _Rem “ G P=—

1 .
67TG Tatt, rep' (76)

pem 2 pem (1 - P)/&Qav ’ gll,grav) c® pem
Proof.
& em 1 /v .
%mp = +— <—Q) V. (by Equation (66)) (77)
511,em € v
1 Mg.0 mQ,o .
= - ——— 1| —Vo. by Equat 44 78
S () (-2, ) oy Equation (10)) (%)
18] .
— = Voo _ — I8l Vo
= & = — (by Equation (41)) (79)
+ S| + S]]
T12,em
= W, (8())
where T, fften:ep and Tijem, J = 2,3,4, are respectively the energy-flow and the

momentum densities. Thus,

gutrer — g THE TP hag (81)
Elem” 6v . .
Kem = W = $%/ + HSH (by Equations (66),(80)), (82)
but
S| = 3 -my,v (by Equations (41),(44)) (83)
4rd 0 ’ ’
SO
6 4
Rem = 9 7 ;TTOO (84)
rEC 3¢t Mg,
6 1
= v e (cf. Remark 7) (85)
6 87
= —=- 5 T > (by the above Lemma)  (86)
c (1 - Py‘(;"avgll,grav) -3¢
167G
- — - (87)
(1 - V;r’ay : gll,grav) (&
]
Remark 8 111" "7 = + ||S|| has unit (recalling from Equation (43))
joule
88
second - meter? (88)
_ kilogram - meter? . 1 (89)
second? second - meter?
_ kilogram (90)

second’
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50 that (Kem - Ti1 ) has unit
_[G]  kilogram (1)
~[8]  second?
_ meter’ second®  kilogram (92)

kilogmm-secomp' meter®  second®

- e | (93)

meter? i

measuring the local curvatures of M2, . We emphasize that our Ty em Tepre-
sents energy flows in a specific direction across an area of square meter per
second, which is different from the common identification of Ti1 em with sta-
tionary energy densities with unit: [joule/ (meter®)] (see, e.g., [9], 45, equation
(2.8.10)).

3 Summary

As Feynman indicated ([2], 1I-19-8,9), the least action in quantum electrody-
namics is the same as that of the classical; in this paper we have shown that
the classical least action is a geodesic of our M2 : thus, we have contributed
a geometric underpinning of both the classical and quantum electrodynamics.

4 References

[1] A. Einstein, Die Grundlage der allgemeinen Relativitatstheorie,
Annalen der Physik, 49 (1916), 769-822.

2] R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman
Lectures on Physics, Addison-Wesley, Reading, 1963.

[3] G.L. Light, A clear logic of Einstein field equations, Int. J.
Appl. Math, 20 No. 6 (2007), 843-866.

[4] M.S. Longair, Theoretical Concepts in Physics, Cambridge
University Press, Cambridge, 1986.

[5] D.R. Lunsford, Gravitation and electrodynamics over SO(3,3),
Int. J. Theo. Phys., 43 No. 1 (2004), 161-177.

(6] R.K. Sachs and H. Wu, General relativity and cosmology,
Bull. Amer. Math. Soc. 83 (1977), 1101-1164.



1024 G. L. Light

[7] J. Smoller, A. Wasserman, S.T. Yau and B. McLeod, Smooth
static solutions of the Einstein-Yang/Mills equation, Bull. Amer.
Math. Soc. 27 (1992), 239-242.

[8] I. Suhendro, A unified field theory of gravity, electromag-
netism, and the Yang-Mills gauge field, Prog. Phys., 1 (2008),
31-37.

9] S. Weinberg, Gravitation and Cosmology, Principles and Ap-
plications of the General Theory of Relativity, Wiley, New York,
1972.

Received: August, 2008



