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Abstract 

The so-called ''second-order'' rheological model has been of widespread use in studies 
related to viscoelastic fluids. The model, however, has been shown by Fosdick and 
Rajagopal (1979) to violate certain Thermodynamics constraints. The so-called ''second-
grade'' model has been proposed as a remedy to comply with thermodynamics. But no 
experimental data has ever been presented to verify the appropriateness of the parameters 
used in this particular model. In the present work, it will be shown that instead of relying 
on hard-to-measure elastic properties of a fluid to see which model is the right one, it is 
much easier to resort to their instability response in plane Poiseuile flow for this purpose. 
To that end, it will be shown that in plane Poiseuille flow, the instability picture of 
second-grade fluids are dramatically different from second-order fluids. That is, while 
for second-order model, fluid’s elasticity has a destabilizing effect, for second-grade 
model, in contrast, it is predicted to have a stabilizing effect.  
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1. Introduction 
Hydrodynamic  instability  is  a  common phenomenon  with  fluid  flows.  That 
is, many  flows  of  practical  interest  lose  their  stability  whenever  certain  
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condition(s) are met. Pipe flows, for example, is known to become unstable 
when the Reynolds number exceeds certain values [Draad et al, 1998]. The end 
result of such flow instabilities at high Reynolds numbers (the so-called inertial 
instability) is often a switchover from a laminar flow to a turbulent one. This 
changeover in flow regimes is always accompanied by a dramatic alteration in 
flow characteristics such as pressure drop and/or the separation point thus 
making the phenomenon of significant industrial importance. This is perhaps 
why predicting conditions under which a flow may become unstable at high 
Reynolds numbers has been the focus of so much research in the past, and this 
is particularly so for Newtonian fluids [Drazin, 1981].  

Like Newtonian fluids, non-Newtonian fluids, too, are vulnerable to inertial 
instability. Indeed, this kind of instability is of paramount importance in 
''turbulent drag reduction phenomenon'' using polymeric additives 
[Sureshkumar et al, 1997]. In contrast to Newtonian fluids, however, non-
Newtonian fluids are vulnerable to instability even at low Reynolds numbers 
[Rothenberger, 1973]. This kind of instability (the so-called ''elastic instability'') 
is frequently encountered in polymer processing operations [Agassant et al, 
1991]. Obviously, one can also envisage cases in which both types of instability 
are in effect simultaneously [Groisman, 1998]. Interestingly, the role played by 
a fluid’s elasticity in its elasticity response is sometimes realized to be rather 
intriguing. For example, while in turbulent drag reduction phenomenon using 
certain high-molecular-weight polymers, a fluid’s elasticity is known to delay 
transition to turbulence for good, in extrusion of molten polymers through a die 
(say, for the production of plastic sheets) a fluid’s elasticity may give rise to the 
undesirable ''sharkskin phenomenon'' with deteriorating effects on surface 
quality [Barone et al, 1999]. It is perhaps because of such peculiarities that in 
recent years a growing interest is seen in the academic world on the subject of 
elastic instability [Shaqfeh, 1996]. 

Hydrodynamic instability is a difficult subject by all standards, and this is 
particularly so when dealing with viscoelastic fluids. That is, experimental data 
are rather rare and theoretical results are not always so convincing [Shaqfeh, 
1996]. The main difficulty with viscoelastic fluids lies obviously in the 
diversity of these fluids in their constitutive behavior [Larson, 1988]. Further 
difficulty arises from their simultaneous viscous and elastic properties thus 
making it difficult to differentiate between those effects which are attributable 
to their shear-dependent viscosity from those which arise as a result of their 
elasticity. Under such conditions, the best that one can hope for is to make 
general conclusions as to the role played by a fluid’s elasticity on its breakdown  



 

 

On the use of hydrodynamic instability test                                                 369 

from laminar flow to turbulent flow. And to achieve such a less ambitious goal, 
one is tempted to rely on simple viscoelastic fluid models such as the “second-
order” model [Bird et al, 1987] with the advantage that it enables elastic effects 
to be addressed exclusively (i.e., without the complicating effects of the shear-
dependent viscosity). Unfortunately, this model has been shown [Fosdick and 
Rajagopal, 1979] to violate certain thermodynamics constraints. The model was 
later revised by Dunn and Rajagopal [1995] in such a way that it could comply 
with thermodynamics. The revised model, which is increasingly referred to as 
the ''second-grade'' model, has never been tested experimentally nor has it been 
invoked in any instability study. As such, it is the main objective of the present 
work to show that the instability picture of second-grade fluids is at odds with 
those of second-order fluids, say, in plane Poiseuille flow. 

2. Basic Equations 
Our instability analysis starts from Cauchy equations of motion [Currie, 1993] 
which together with the continuity equation for an incompressible fluid 
constitute the four equations governing the isothermal flow of any fluid 
(whether Newtonian or non-Newtonian): 
 

τρ .. ∇+−∇=⎥⎦
⎤

⎢⎣
⎡ ∇+
∂
∂ p

t
vvv                                                                                                           (1)  

0. =∇ v                                                                                                                (2) 

where ρ  is the density, V is the velocity vector, and τ is the extra stress tensor. 
As mentioned above, the fluids of interest will be assumed to obey the ''second-
order'' and ''second-grade'' models as their constitutive equation. The extra 
stress tensor for such fluids is [Truesdell and Noll, 1992]: 

2
121 AAA 21 ααμτ ++=                                                                                        (3) 

where μ  is the (constant) viscosity of the fluid with 1α  and 2α  being the two 
normal stress moduli both reflecting a fluid’s elasticity. In this equation, 1A  
and 2A  are kinematical tensors defined by [Rivlin and Ericksen, 1955]: 

T)( VVA1 ∇+∇=                                                                                                 (4) 

1112 AVVAAA .)(.)( T

Dt
D

∇+∇+=                                                                   (5) 

where DtD /  is the material derivative. The three material properties μ , 1α ,  
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and 2α  should normally be determined from viscometric data. Experimental 
data available for polymeric liquids suggest that 01 <α , and 02 ≤α . The model 
with such restrictions on its elastic parameters is commonly referred to as the 
''second-order'' model [Bird et al, 1987]. Irrespective of the fact that it has been 
of widespread use in the past, the model has the shortcoming that it violates 
certain thermodynamics constraints [Fosdick and Rajagopal, 1979]. For the 
model to become compatible with thermodynamics, it has been shown by Dunn 
and Rajagopal [1995] that we should have 01 >α  and 021 =+αα . Fluids 
which meet these restrictions are increasingly referred to as ''second-grade'' 
fluids. As mentioned above, in the present work, we are going to contrast the 
instability picture of second-grade model with second-order model in plane 
Poiseuile flow. This particular flow has the advantage that it has been addressed 
by many researchers in the past [Thomas, 1953; Chun and Schwarz, 1968] 
meaning that comparison can be made with previous works. Plane Poiseuile 
flow has the further advantage that it renders itself to an exact analytical 
solution for both fluid models. That is, for pressure-driven flow between two 
parallel plates extending in the x-direction, it is easy to show that for these 
particular viscoelastic fluids the velocity profile is of the form 21)( yyV −=  
(made dimensionless using the centerline velocity). One can then proceed with 
imposing a small disturbance to the base flow and see what happens to this 
disturbance in the course of time [Orr, 1907; Sommerfeld, 1908]. As to the 
disturbance itself, we have decided to rely on two-dimensional disturbances both 
for its ease of analysis, and, more importantly, in order to compare our numerical 
results with published data in the literature. Thus we write: 

 
 

)t,y,x(u)y(V)t,y,x(u ′+=  
)t,y,x(v0)t,y,x(v ′+=                                                    (6) 

)t,y,x(p)x(p)t,y,x(p 0 ′+=  

These perturbed quantities are then inserted into the time-dependent equations 
of motion and terms nonlinear in the perturbed quantities are discarded. Having 
introduced a perturbation stream function ψ ′ , it can be decomposed into its 
Fourier modes as: )]ctx(iexp[)y(f)t,y,x( −α=ψ′  where α  is the (real) wave 
number, c  is the (complex) wave velocity, and f is the (complex) amplitude of 
the perturbation. Substituting this stream function into the linearized set of 
momentum equations, the following fourth-order nonlinear ODE is obtained for 
our fluids of interest: 



 

 

On the use of hydrodynamic instability test                                                 371 

0)].())(Re[(.))](Re(.1[ 22222 =′′′′+′′−−−−−−− fVKVDcVifDcVKi αααα                 
                                                                                                                          (7) 

where the differential operator D has been used in place of d/dy for ease of 
reading. In this equation Re is the Reynolds number and k is the elasticity 
number defined respectively as: μρ= hURe c  and 2

1 hk ρα= .  

It is to be noted that Eq. (7) is valid for both second-order and second-grade 
fluids by simply changing the sign of the elasticity number k (negative for 
second-order fluids and positive for second-grade fluids). Equation (7) is seen 
to be a fourth-order ODE, and so it needs four boundary conditions to be 
amenable to a numerical and/or analytical solution. The most relevant boundary 
conditions are the perturbation velocities being zero at the surface of both 
plates; that is: 0)1()1( =±′=± ff . In the present work, use will be made of the 
symmetry of the velocity field thus it is sufficient to look for even modes only. 
That is, the boundary conditions which will be used in practice are: 

0)0()0( =′′′=′ ff  and 0)1()1( =′= ff  . 
 
3. Method of solution 
Equation (7) with its pertinent boundary conditions constitute a general 
eigenvalue problem of the form: f.cBf.A =  where c is the eigenvalue and  f  is 
the eigenfunction. The coefficients A and B appearing in this equation are 
related to k, Re, and α  as: 

VD.KVD)ID(V.Re.i)ID2D)(V.Re.Ki1(A 4222222 ++α−α++α−α+−=
)IDRe(.i)ID2DRe(.KiB 224224 α−α+α+α−α=                                               (8) 

In these equations, 2D  and 4D  are differential operators which stand for 
22 / dyd  and 44 / dyd  respectively.  To test for the instability of any (parallel or 

nearly-parallel) base flow, V(y), one can fix k and Re and look for those 
wavenumbers α  which make the imaginary part of the wavespeed c negative. 
In practice, however, it is sufficient to determine the neutral instability curve, 
i.e, the locus of those points in the k−− Reα  space for which the imaginary 
part of c is just zero. In the present work, two different numerical methods will 
be used for this purpose: i) the collocation method, and ii) the Ricatti method.  

3.1 The Collocation Method 
Spectral and pseudo-spectral methods are of widespread use in hydrodynamic 
instability studies because of their being of high accuracy [Canuto, 1988; Boyd, 
2000]. The main idea behind spectral methods is to transform a problem in  
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continuum domain into a discrete system of relatively small order. As to our 
eigenvalue problem as posed by Eq, (7), the complex eigenfunction, f(y), is 
approxmiated by a sum of N base or trial functions nξ  as: 

∑
=

=≈
N

n
nnN yayfyf

1
)()()( ξ .  And there are a variety of trial functions to choose 

from (e.g., Lagrange, Legender, Chebyshev, etc). In the present work, the trial 
functions nξ  are constructed using Chebyshev polynomials in such a way that 
each of them will satisfy the required boundary conditions exactly; that is: 

)y(T
2n

n)y(T
2n

)1n(2)y(T)y( 3n1n1nn ++− +
+

+
+

−=ξ                                                         (9) 

where Tn is the Chebyshev polynomial of degree n defined in the interval [1,-1] 
by )](coscos[)( 1 ynyTn

−= . By substituting the approximate solution, )(yfN  in Eq. 
(7), a nonzero residue will be left reflecting the fact that the proposed solution 
is not indeed exact. The problem is then to choose the coefficients an such that 
this residue is minimized. In the standard fully spectral method, these 
coefficients can be obtained by requiring that the residue is orthogonal to each 
of the approximating functions nϕ . In the so-called pseudo-spectral method, the 
residue is forced to be become exactly equal to zero at certain points called 
collocation points. In the present work, we are going to rely on the latter 
method, i.e., the collocation-point method to find an. As to the selection of the 
collocation points, use will be made of the so-called Gauss-Lobatto quadrature 
points jy  defined by N,...,2,1,0j;)njcos(y j =π= . The end result of this 
routine is turned out to be a set of N linear algebraic equations in the form: 

∑
=

=α
N

1n
nmn 0aRe),,c,k(b  where the complex coefficients bmn are in general 

functions of k, Re, α, and c. Since these N equations are linear and 
homogenous, a nontrivial solution exists if, and only if, the determinent of the 

NN ×  complex matrix bmn vanishes identically. The search for eigenvalues, c, 
can then be initiated for any given combination of α and Re (for a fixed k) in 
order to determine the wave speed(s), c, for which the real and imaginary parts 
of this determinant vanish simultaneously. Having calculated all the 
eigenvalues of Eq. (7), the neutral instability curve can be plotted by identifying 
those points for which 0c)c(Im i == .  

3.2 The Riccati’s Method 
The most popular method for computing the eigenvalues of the Orr-Sommerfeld 
equation is to rely on standard numerical methods such as the Runge-Kutta  
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method while shooting with respect to c in order to satisfy the boundary 
conditions. Use of these methods removes any need to compute eigenvalues of 
large matrices and offers conceptual and analytical simplicity. To integrate the 
OS equation, the standard practice is to decompose it into a set of four 
quadratically nonlinear system of ordinary differential equation. To that end, 
the Orr-Sommerfeld equation is written as FMF .dtd = where the vector F and 
the coefficient matrix M are defined as:  
 

)ff,ff,f,f( 22 ′α−′′′α−′′′=F                                                                           (10) 
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1000
010
0010

2

2

M          (11) 

We now assume that 1f  and 2f  are two independent solutions of Eq. (7) 
satisfying the initial conditions: Tf ]0,0,0,1[)0(1 = , Tf ]0,1,0,0[)0(2 =  both 
corresponding to the boundary conditions at y = 0. The general solution of the 
Orr-Sommerfeld equation must then be of the form: 2211)( ffyf λλ += . Now, 
having imposed the boundary conditions at y = 1, a homogenous system of 
equations will be obtained as: 

0)1()1( 2211 =+ ff λλ  ;  0)1()1( 2211 =′+′ ff λλ                                                     (12) 

In a search for non-zero solutions, an eigenvalue problem is then obtained as: 

0)1()1()1()1(Re),,,( 2121 =′+′= ffffkcαϕ                                                          (13) 

For fixed values of Re,,kα , the eigenvalues c can be found by searching 
iteratively for the zeros of φ . Unfortunately, numerical solution of Eq. (13) is 
accompanied with some difficulties due to the fact that 1f  and 2f  loose their 
linear independency near y = 1. There are different methods to overcome this 
problem among which the Riccati method is among of the most successful ones. 
The basic idea in the Riccati method is to transform a linear eigenvalue problem 
into a set of nonlinear initial-value equations. To illustrate the method, lets 
assume that we have a system of equations of the form [Scott, 1973]:  
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QPP 21 AA +=′ ;  QPQ 43 AA +=′−                                                               (14) 

where P and Q are N-vectors, and A1, A2, A3, A4 are NN ×  coefficient 
matrices. The Riccati matrix is then introduced through the transformation 

QRP .=  with R satisfying the following first-order nonlinear matrix 
differential equation RRRRR 3412 AAAA +++=′  where we have: 0)0( =P , 

0)0( =R , and IQ =)0(  with I  being the identity matrix.. The eigenvalues, c, 
can then be determined by requiring that 0)]1(det[ =R . To apply this method to 
the modified Orr-Sommerfeld equation, we should substitute: 

⎥
⎦

⎤
⎢
⎣

⎡
′α−′′

′
=

ff
f
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⎦

⎤
⎢
⎣

⎡

α−′′
=

ff
f

2Q                                                                      (15) 

The modified OS equation is then recovered by setting:  

01 =A ; IA =3 ; 04 =A            (16) 
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where 2
2 A=+′ RR . Now, defining ⎥

⎦

⎤
⎢
⎣

⎡
=

43

21

rr
rr

R , a set of four nonlinear 

coupled first-order ordinary differential equations can be obtained as: 

2
32

2
11 α=++′ rrrr  

142212 =++′ rrrrr  

)Re(1
)Re(

43313 cVki
VkVirrrrr
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α
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The boundary conditions required to solve these equations are: 

@ 0=y ,      04321 ==== rrrr  
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@ 1=y ,       02 =r                                                                                              (19) 

The system of Eqs. (18) subject to the boundary conditions as given by Eq. (19) 
can easily be solved numerically using Mathematica.  

4. Results and discussion 

 
The two methods of solution described above were translated into two separate 
Fortran codes and run on a Pentium-4 PC. For the first method, i.e., the 
collocation-point method, we used 100 Chebyshev terms to increase accuracy 
of the results. To see if the computer codes developed in this work are 
functioning properly, they were used to determine the critical Reynolds number 
for Newtonian fluids (i.e., for k = 0). This was done at Re = 10,000 for a 
wavelength of 1=α . As is well established in the literature, the critical 
Reynolds number for Poisuille flow of Newtonian fluids is known to be equal to 
5772.20 [Orszag, 1971]. Our collocation-point method renders a critical 
Reynolds number of 5772.84. The Riccati method, gives a critical Reynolds 
number of 5772.40. Obviously both methods are working properly, at least, as 
far as Newtonian fluids are concerned. To further validate the codes, they were 
used to obtain neutral instability curves for second order fluids too. Figure 1 
presents typical results for second-order fluids. These results are virtually the 
same as those published in the literature obtained using finite differences [Chun 
and Schwarz, 1968]. Having validated the code, it was used to find neutral 
instability curves for the fluid of interest, i.e., the second-grade fluid. Table 1 
presents a comparison between critical Reynolds and wave numbers between 
second-order and second-grade fluids. As seen in this table, while for second-
order fluids, elasticity has a destabilizing effect, for second-grade fluids, it has a 
stabilizing effect.  
 
To elucidate the main cause of instability, Fig. 3 shows a plot of the near-wall 
perturbation vorticity for a wave number of α = 1 at Re = 5000 for a second-
order fluid at three different elasticity numbers of 45 105,10,0 −− ×=k . Under 
these conditions, the flow is known to be stable for k = 0 and 510−=k  (see 
Table 1). As seen in Fig. 3, for these two stable cases, perturbation vorticity is 
decaying in time. In contrast, for the case of 410−=k  for which the flow is 
known to be unstable (see Table 1), the vorticity is seen to be growing in time. 
Therefore, it appears that instability has roots in the time evolution of the near-
wall vorticity of the perturbed flow.  
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Table 1: Instability behavior of second-order (subscript SO) and econd-
grade (subscript SG) fluids in plane Poiseuille flow. 

k  

 
Re( )SO  

 
αSO  Re( )SG  

αSG  

0  5772 1.0195 5772 1.0195 

10 5–
 

5639 1.0240 5915 1.0155 

5 10 5–×  
5168 1.0475 6587 0.9893 

10 4–
 

4698 1.0750 7756 0.9510 

2 10 4–×  
4014 1.1215 13392 0.8415 

  

5. Concluding remarks 
In the present work, hydrodynamic instability of second-grade fluids has been 
investigated in plane Posieuile flow, to the best of our knowledge, for the first 
time. Two different numerical methods have been used for this purpose, 
namely: i) the collocation method, and ii) the Riccati’s method—the latter, to 
the best of our knowledge, for the first time for viscoelastic fluids. Consistent 
results were obtained using both methods for the critical Reynolds number and 
also the wave number. Based on the results presented in this work, it is 
concluded that for second-order fluids, fluid’s elasticity has a destabilizing 
effect. In contrast, for second-grade fluids, fluid’s elasticity is predicted to have 
a stabilizing effect. Since the response of these two controversial fluid models 
to infinitesimal disturbances are at odds with each other in plane Poiseuille 
flow, it is proposed that instead of measuring elastic properties of a fluid for 
determining which model is the right one (based on their sign being positive or 
negative), one may equally resort to their different instability response in plane 
Poiseuile flow as an effective and simpler means for this purpose.  
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Fig. 1:  Neutral instability curves for second-order fluids as a function 
of the elasticity number k obtained using the collocation method. 

 
 
Fig. 2:  Neutral instability curves for second-grade fluids as a function  
of the elasticity number k obtained using the Riccati’s method. 
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Fig. 3: Time evolution of perturbation vorticity as a function of the  
elasticity number.  
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