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Abstract

An asymptotic expansion for the generalised quadratic Gauss sum
Sn(z,0) = Z;V:O exp(mizj? +2mijf), where z, 0 are real and N is a pos-
itive integer, is obtained as x — 0 and N — oo such that Nx = O(1).
A modified form of this expansion is given that holds in the neighbour-
hood of integer values of Nx + 6. Numerical results are presented to
demonstrate the accuracy of the expansions.
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1. Introduction

We consider the generalised quadratic Gauss sum

N
Sn(x,0) = > "exp(mixj® + 2mijh), (1.1)

j=0
where 0 < z < 1, —% <6< % and N is a positive integer. The prime on

the sum indicates that the first and last terms are halved. Our interest in
this paper is concerned with obtaining an asymptotic expansion for Sy(z,0)
as x — 0 and N — oo, such that the quantity Nx = O(1). Applications of the
above exponential sum arise in various number-theoretic contexts and in the
study of disorder in dynamical systems. Two physical applications when 6 = 0
arising in quantum spin in an axially symmetric electric field and in Fresnel
diffraction from large gratings are discussed in [2].

The sum Sy(x, ) has a long history that goes back to Gauss, who evaluated
the sum corresponding to = 2/N when # = 0. The results of Gauss were
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generalised for rational z = p/q, where p and ¢ are relatively prime, into the
elegant formula established by Genocchi and Schaar [12]

Sa(p/,0) = €/*(q/p)* S, (—q/p,0)

when pq is even. An investigation of Gauss sums Sy (2/¢,0) with N < ¢ was
undertaken in [13], where best possible estimates for the maximum modulus
were obtained. The geometric content of the sum Sy (xz,0) was first highlighted
in [5, 13] and subsequently explored in [2, 3|. The spiralling patterns produced
by the partial sums of (1.1) (when its terms are regarded as unit vectors in
the complex plane) for fixed  as N — oo can result in an intricate pattern
consisting of a superposition of spirals (or “curlicues”). The scalings of this
hierarchy of spirals is found to depend delicately on the arithmetic nature of
x [2, 3]. When x = p/q, where p and ¢ are relatively prime, and § = 0 the
trace of the partial sums of (1.1) is relatively simple. When pgq is even the
spiral pattern is regular and ‘diffuses’ in the complex plane away from the
origin in blocks, while when pq is odd the pattern is periodic and repeats itself
indefinitely as N — oo. Accordingly, Sy(z,0) = O(N) or O(1) as N — oo
when pq is even or odd. When z is irrational a more complicated pattern
emerges with the pattern exhibiting a seemingly random-walk behaviour; see
Fig. 1.

Estimates for the growth of Sy (x,0) when N is large and x is fixed in the
range 0 < x < 1 were considered in [8] using a renormalisation process (which
is related to the Poisson summation formula). The fundamental tool in this
analysis is the approximate functional relation [7, 8]

e~ i0% [t mi/a 16 1416
) = s (L) o ()

This transformation shows that the sum Sy (x,6) over N terms can be approx-

imated by a similar sum taken over | Nz| terms with the variable x replaced
by —1/x and € by 6/xz. Repeated application of (1.2), making use of the simple
symmetry properties satisfied by (1.1) to maintain x in the interval 0 < x < 1
at each stage, enables the representation of Sy (z,#) in terms of a steadily de-
creasing number of terms. In this way it was shown that Sy(x,0) = o(N) for
any irrational x, with more precise order estimates depending on the detailed
arithmetic structure of z [8].

A different problem, which concerns us here, is the asymptotic estimation
of Sy(z,0) for v+ — 0 when N — oo such that Nz is finite. An early paper
dealing with estimates for Sy(x,0) when 0 < x < 1 is that of Fiedler et
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(e) 2

Figure 1: Traces of the partial sums of (1.1) in the complex plane when (a) z =
31/142, 0 = 0 (b) = = 31/143, 6 = 0 (c) = = 707/1000, 6 = 0 with N < 2 x 103, (d)
x=3/151,0 =04, (e) z =52 0 =0 with N < 5 x 10% and (f) = = 1/(50y/7),
6 = 0.2 with N < 8 x 103. The patterns in (a) and (c) diffuse away from the origin
in periodic blocks of 142 and 103 terms, respectively; the figures show 4 such blocks
in (a) and 2 blocks in (¢). The pattern in (b) is periodic with period 2 x 143 = 286.
In (e) and (f) the pattern exhibits a random-walk behaviour typical of irrational x.

al. [7], and more recently that in [10, §2.2], but their error terms are too
large for our purposes when z — 0. Following on from the gross estimates
in [13], the leading terms in the expansion in the case §# = 0 were obtained
in [17] when Nx < 1. Asymptotic expansions of the higher-order Gauss sum
Z;V:O exp (mixjP) valid as © — 0 in the principal spiral pzNP~1/2 < 1 have
been given in [6, 15]. In the special case p = 2, however, the expansions so
obtained also only described the asymptotic structure of Sy(z,0) in the first
spiral corresponding to Nx < 1. The leading behaviour of the higher-order
sum for N — oo, 0 < z < 1 and integer values of p > 3 was obtained in [3;

10, §3.7]. Coutsias & Kazarinoff [4] derived an expansion for Sy(z,0) valid
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as r — 0 and finite Nz although, as they were principally concerned with
improving the order estimate in (1.2), one of their terms was left as an order
estimate. Their procedure was to employ the Poisson summation formula in
the form

Sw(e,0)= 3 [ explamionn)dr,

k=—00

where ¢y (t) = %l’tQ + kt, and decompose the resulting sum according to where
the stationary point (given by ¢} = 0) of the phase of the kth term is situated
with respect to the interval (—N, N).

In this paper, we derive the expansion of Sy(z,0) as z — 0 and N — oo
such that Nx = O(1) in the case # # 0 by a more direct method using
the Abel-Plana form of the Euler-Maclaurin summation formula. The sum
Sn(x,0) is expressed exactly as a series of complementary error functions with

~1/2_ The resulting expansion of Sy(x,6) as x — 0

argument proportional to x
then follows from the asymptotics of the complementary error function. The
expansion so obtained breaks down in the neighbourhood of integer values of
Nzx + 6; we describe the modification required to produce an expansion that
remains valid uniformly in Nx +6. Numerical results are given to demonstrate
the accuracy of the different expansions.

Finally, the generalised Gauss sum (1.1) can be extended by changing the
exponential factor to exp{mizp(j)}, where pi(z) is a polynomial in z of degree
k such that pi(z) > 0 and pj(z) > 0 for z > 0. A leading order estimate
of this generalised exponential sum (a Weyl sum) when x is small has been
obtained in [11]. A related, though quite different, asymptotic problem with
pe(z) = 2%, 2 = ia (a > 0) and N = oo (the so-called Euler-Jacobi sum)
has been considered in the limit @ — 0 in [9] for integer & and in [16, §8.1] for
k > 1. The expansion of the sum in this case is found to consist of an algebraic
expansion together with a sequence of exponentially small expansions whose
number increases by one — manifested by means of a Stokes phenomenon —
each time k passes through the values 2(mod 4).

2. The expansion of Sy(z,0) for z — 0
Let N be a positive integer, 0 < x < 1, —% <6< % and define the quantity
¢ := Nz + 0. Then, with f(t) = exp(mizt® + 2mift), we have by Cauchy’s

theorem
N—1

1) = 5 [ ot (xt) £0)

=

ey
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where C is a closed path encircling only the poles of the integrand at t =
1,2,...,N — 1. Following (with a slight modification) the derivation of the
Abel-Plana form of the Euler-Maclaurin summation formula given in [14,
p. 290], we deform the path C into the parallelogram with vertices at +Pe™/*,
N =+ Pe™* (P > 0) and with semi-circular indentations of radius § < 1 around

the points ¢t = 0 and ¢ = N; see Fig. 2. Then, denoting the upper and lower
D

Figure 2: The contours C; and Cy with the vertices A, B at +Pe™/* and C, D at
N F Pe™/4 respectively. The heavy dots denote the poles of the integrand.

parts of the contour by C; and C, respectively, we find' [14, p. 290]

v V- /() /()
) = ) dt _dt / Yt
S A0 = [ i [ Sl [

Now let P — oo, so that the contributions from the parts of C; and C,
parallel to the real axis vanish on account of the exponential decay of the
factor exp(mizt?), and let 6 — 0. The integrals around the indentation linking
e™/* with ¢ and § with —de™/* then tend to —2% f(0) and —2 f(0), respectively;
similarly for the other indentation at ¢t = N. Thus we obtain

N , ) N
Sn(@.0) = 3 FG) = Iy = Io) + [ f(B)dt, (2.1)
3=0
where Fo(r)
o n T o
In —/0 e2W"——1dT ('TL—O,N),
with

Fo(7) = f(n— 7€™/*) = f(n+ 7e™/*) = 2¢7™7" f(n) sinh {27 (nz + 0)wr},

i /4

and, for convenience, we have set w := e¢7™/*, The prime on the summation

sign signifies that the first and last terms in the sum are halved. We remark
that Fo(7) =0 when 6 = 0.

1 'We remark that this procedure is similar to that employed in [10, §2.2].
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We now consider in turn each of the integrals appearing (2.1). In the
integral Iy, we substitute the identity

K 6727’er7

Z 27rkw7'
627rw7' _ 627rw7 _ 1’

where K denotes an arbitrary positive integer. Then we find

K o0
Iy = 2f(N)Z/ e =2k Ginh (2réwT) dT + Hy
k=170
J(N) K/"O_w i —uzt
_ SU uz, uz ] +H ’ 29
Nore: kz::l ; e (e e )du K (2.2)

where u = (272)"/?7 and
2E = 2n/x)Y? (k4 &) e ™/, (2.3)

The remainder Hy is given by

00 727TKLUTF ) )

Hy — / e ~ N(T) dr — f(N)/ e~ TET 7(2K+1)TerG(T) dT,
0 et — 1 0

with G(7) = sinh (2réwT)/ sinh (7wT). It is easy to show that, when 0 < x < 1

and || < L, the quantity [e”**V“7G(r)| is monotonically decreasing on [0, co)

and bounded by 2£. Hence, provided K > N,

V2

H ) /OO 727T(K7N)Re(w)7'd —

so that Hx — 0 as K — oo. The integrals appearing on the right-hand side
of (2.2) can be evaluated in terms of the complementary error function erfc (z2)
to obtain, with K set equal to oo,

2 W Z:E ), (2.4)

where we have defined E(z) by

2 o] 1 o 1,2
a \/;/ e 2 T du = ez* erfc (2/4/2). (2.5)
0

We now let + — 0 and set £ = Nax + 0 = M + ¢, where M = [¢] denotes
the nearest integer part of £ and —% <e< % The values of the variable z;
lie on the ray arg z = —iw for k£ > 1, while the values of z; lie on the rays
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I<k<§

U Z

Figure 3: The points zki for k=1,2,....

arg z = %7? when k£ < £ and arg z = —iw when k& > &; see Fig. 3. Then,
provided |e| >> 22, it is clear that |2| — co uniformly in k as z — 0. The
expansion of F(z) as |z| — 0o is [1, Eq. (7.1.23)]

LS Y T+ 53 + Ru2) (Jars 2| < 2m)

m r=0

E(z) =

268 4 %E}—V D(r+3)(32%) 7% — Ru(—2) (larg(—2)| < 3m),

(2.6)
where the second expansion follows from the first and the well-known reflection
formula erfc (z) = 2 — erfc (—z). The remainder R,(z) after n terms satisfies
the bound?

1

2
|Ra(2)] < D(n+3) 7" (Jarg 2| < g7). (2.7)

Substitution of the expansions (2.6a) (with z = 2} (for k¥ > 1) and 2z = z;
(for k> €)) and (2.6b) (with z = 2z, (for k < §)) into (2.4) then yields after a
little algebraic simplification

1 = pa L (r+ %) Y
Iy = §f(N) Tz::o(—) —F(%) (mix) e, (€)
i) M e TR0 LR, (25€) (2.8)

VT %

for n =1,2,.... The coefficients ¢,(§) are given by

1 (o]
(&) = g Yo (k+) (2.9)
Cero

2 This follows from the relation I'(1,22?) = \/merfc(z) connecting the complementary
error function to the incomplete gamma function and the error bound for I'(a, z) given in
[14, p. 111].
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where the sum corresponding to r = 0 must be interpreted in the principal
value sense 32°  _ap = limp—oo 20, ax. The explicit representation of
the first few coefficients ¢, () is given in §3. We observe that when £ < 1 the
second sum in (2.8) is empty.

The remainder term R, (z; &) is given by

. (N) _ N
Ron(:€) m{];é}% %Rn(—zk)—];}%n(zk)}, (2.10)

so that, by (2.3) and (2.7),

Roli)] < —=={ IR+ X 1l + X 1Bl =52)1}

k>1 k>¢& k<€

< ZiraaH (L) 40, A= 3 e 2
P

where o, :=2n + 1 (n > 1). Then, with { = M + ¢, where M and € are as
defined above, we have

An(§) = Z|/€—i—e| an+z ot 3 (ke

k=M+1
1 (e ¢
< (k+1—e) 4> (k+e)™
(1 — E)aw Ean Z:: ]CZ::I
1
< —+ bo + b + 2¢ (o), (2.12)

(1 —¢e)n  em  (14¢€)n

where 5, = 1 — 0y, (r = 0,1), with s, being the Kronecker symbol, and
((av,) is the Riemann zeta function. Since, from (2.9), |c.(£)| < Aq(&)/m* !
it is readily seen that the above expansion for Iy possesses an asymptotic
character for x — 0 when M = 0, and provided ¢ >> z'/2 when M > 1.

For the integral involving Fy(7) in (2.1), the variables zi¥ = (27 /x)/?(k £
0)e~™* so that || — oo when 2 — 0 for k > 1. We then immediately obtain
from (2.8) the asymptotic expansion

1 = T—lF(T + %)
Iy = 5 > (=) T

2

(miz) e, (0) + Ry(x;0) (2.13)

as x — 0, where ¢,.(0) and |R,(z;60)| are given by (2.9) and (2.11) (with &
replaced by 6) and from (2.12)

A (0) <14 2¢(ay,) + (1 —|0]) . (2.14)



Generalised quadratic Gauss sum 585

We remark that, from (2.9), the coefficients ¢, (0) =0 (r > 0).
Finally, the integral over the interval [0, N] can be evaluated in terms of
the error function [1, p. 297] as

N , N . JEA.
Iy = / f(t) dt = 6—m€2/z/ emx(t—l—@/I)th _ 6—m€2/z/ eszQdT
0 0 0

/x
—m€2/r+m/4

_ ¢ NG, {erf wfm — erf (wé )} (2.15)

Then upon noting that

FN)e k=62 _ =it [x —ri(k? ~2k6) 2

Y

and collecting together the results in (2.1), (2.8), (2.13) and (2.15), we obtain

Theorem 1  Let Sy(x,0) be the sum defined in (2.1), where 0 < z < 1,
—% <0< %, N is a positive integer and & := Nx + 0. Then, as v — 0 we
have the asymptotic expansion

Sw(z,0) = I+ o Z

efﬂ192/x+7rz/4 Z k2 [t 2k _ ( )
+ e*ﬂ"l/ x T x + Rn/7 2.16
VT k<€
where n = 1,2,... and Jy is given by (2.15). The coefficients C, are defined
by
Cr = f(N)er(§) — e (0), (2.17)
where ¢, are defined in (2.9) and are explicitly represented in §3. The remain-
der R,
Ry = Ra(:€) = Ru(w:6),
where Ry (x;€) and R, (x;0) have the bounds in (2.11), (2.12) and (2.14) ex-
pressed in terms of € = £ — [£]. The expansion (2.16) holds without restriction
when M = [£] = 0 and provided || >> '/ when M > 1.

When ¢ = o(x'/?) and M > 1 the expansion in (2.16) breaks down since,
when k = M = [¢], the argument of the term FE(z;,) in (2.4) has the value

2y = —€ (2m/x)Y? e/

and so lies in a neighbourhood of the origin; see Fig. 3. Furthermore, the bound
for the remainder R,,(x;¢) in (2.11) and (2.12) similarly contains a term that
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behaves like 27 /€*"*1 (when M > 1). In this case it is no longer meaningful
to employ the asymptotic expansions in (2.6) for E(z, ) when £k = M. To
overcome this difficulty, we simply leave this latter term in (2.4) as it is and
delete the corresponding term from the coefficients ¢,.(§) to produce the new
(regularised) coefficients .(§) defined by

(€)= er(€) — (we) >, (2.18)

Then the modified expansion for Iy in (2.8) becomes (for M > 1)

= 'r—lF(r + %) T\ A f(N) Y
= Eor st -sof P
67771'02/36 . .
N Z *omik? ot 2mike /x| R! (2;6), (2.19)

VT

where we have employed the reflection formula for erfc (2) when e > 0 stated
at (2.6), the upper or lower sign is chosen according as ¢ > 0 or € < 0,
respectively, and a(e) =1 (¢ > 0), 0 (¢ = 0), —1 (e < 0). The asterisk on the
summation sign signifies that when e = 0 (£ = M) the last term in the sum
is halved.* The prime on the remainder similarly denotes the deletion of the
term corresponding to k = M in (2.10), so that R/ (z;&) satisfies the bound
(2.11), but with A, (&) given by the bound (2.12) with the term e *" deleted.
Then we have

Theorem 2  Let Sy(x,0) be the sum defined in (2.1), where 0 < z < 1,
—% <0< %, N is a positive integer and & := Nx + 0. Then, as v — 0 we
have the asymptotic expansion

SNy )y — g(e)e™/ A B

= Z:O( ) 0 (miz)"C). — a(e)e NG (F2ar)
—mif? x4mi/4

+u Z * o mik? [t 2mikf/e | R;, (2.20)

VT k<€

where n = 1,2,..., a(e) =1, (¢ > 0), 0 (¢ = 0), =1 (e < 0), Jy is given
by (2.15) and E(z) is defined in (2.6). The upper or lower sign is chosen
according as € > 0 or e < 0, respectively. The coefficients C!. are defined by

SN(JJ,Q) = Jy+

Cl = F(N)L(E) - er(0),

3 This results from the fact that E(0) = 1.
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where c.(§) and c.(0) are defined in (2.18) and (2.9) and are explicitly repre-
sented in §3. The remainder R,

R, = R (4;€) = Ra(;0),

where RL (2;€) and R, (x;0) have the bounds in (2.11) and (2.12) with the term
e~ deleted, and in (2.11) and (2.14), respectively. The expansion (2.20) holds
uniformly in e = £ — [£] and, in particular, in the neighbourhood of € = 0.

3. Numerical results and discussion

We present results of numerical calculations using the expansions for Sy(x,0)
n (2.16) and (2.20) truncated after n < 4 terms. The coefficients ¢,.(§) (and
¢ (0)) defined in (2.9), which appear in the expansion in (2.16), can be evalu-
ated in the form

1 1 d*
W€ =cot (1) < e, )= oy st (P2 D, (3)
Explicit representations for the first few coefficients with » > 1 are therefore
given by
~ cot (7€) 1

2 = Slre) ~ e
_ cot (7€) 2 1 1

() = () < cot?(m€) + 3sin2(7r§)> a5 (3.2)
_ cot(m§) 26 cot?(w&) 17 1 1

(&) = sin?(7€) < ot (m€) + 45 sin?(m€) * EsinA‘(mf)) (w7

These coefficients have a removable singularity at £ = 0, as can be seen from
the expansions valid for small &

_ ot (mg) _
w@)=-T-TL o ag=-D -2l

and so on, but are singular whenever £ equals a positive integer. The reg-

7§ A(mE)’

ularised coefficients ¢.(£) appearing in the expansion (2.20) become, with
= M+eand M = [¢],

(§) = (&) — (me) " =€) — (mE) T, (3.3)

which are thus seen to be regular when ¢ = M. Computation of the coefficients
) (€) then follows straightforwardly from (3.2), unless € is very close to zero in
which case a series expansion for ¢,(€) can be employed.
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In Tables 1 and 2, we show the absolute value of the error in the computa-
tion of Sy (x, ) using the expansions (2.16) and (2.20), respectively, for several
values of z, 0, truncation index N and different levels n. The exact value of
Sn(z,0) was obtained by high-precision summation of (1.1). Note that in Ta-
ble 2 we have chosen some values of £ in the neighbourhood of integer values
to demonstrate the accuracy of the modified expansion (2.20) in this limit. In

2 =102, =040 =101 §=—-020
n| N=1000, €=104 N = 5000, &= 0.30
1 3.954 x 1073 1.037 x 107
2 1.178 x 10~ 1.019 x 1079
3 5.852 x 10~° 1.589 x 10713
4 4.067 x 1077 3.426 x 10717

z = 1/(200y/7), 0= 0.10 | z = 1/(250+/3), 6 = 0.30

n| N =9000, £=2548) | N =6150, &= 14.503
1 5.289 x 107 1.623 x 10~
2 6.331 x 107 4437 x 1077
3 8.667 x 10~ 2.299 x 10~
4 1.438 x 10710 2.088 x 1011

Table 1: Values of the absolute error in the computation of Sy (x,8) by (2.16) for different
truncation index n.

Fig. 4 we compare the absolute value of the error in the expansions in (2.16)
and (2.20) when x = 1/(2504/3) and 6 = 0.3 with n = 4 and for the truncation
index N in the range 5900 < N < 6400; this corresponds to values of £ ranging
from just less than 14 to just greater than 15. It can be seen that the expan-
sion (2.16) yields greatest accuracy when € ~ 1 and progressively deteriorates
as & approaches integer values (e — 0). The expansion (2.20), on the other
hand, yields uniform accuracy in the neighbourhood of integer values of ¢ and
is least accurate (although comparable with that of (2.16)) when € ~ 1.
Finally, in the case of the classical quadratic Gauss sum (6 = 0) we obtain

from (2.16)

LA ) T+ Y
2\/xerf(e AN mz) + % ;(—)W

SN<1‘, 0) =
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x = 1/500, 6 =025 x =1/(250y/7), #=0.10
n | N =12000, & = 75.648 N = 6600, &= 14.995
1 4.612 x 10~* 3.901 x 107
2 3.458 x 1076 6.834 x 10~8
3 4.253 x 1078 1.781 x 10710
4 7.301 x 10710 6.099 x 10713
r=1/(200y/3), §=0.20|2=1/(500/3), 8 =1//5
n| N =17552, £=22.001 N = 12600, ¢ = 14.996
1 1.076 x 10~* 1.716 x 10~*
2 2.700 x 1077 3.122 x 1077
3 1.040 x 1079 9.397 x 10710
4 5.397 x 10712 3.956 x 10712

Table 2: Values of the absolute error in the computation of Sy (x,8) by (2.20) for different

truncation index n.

7rz/4

\/x

k<¢

Ze’mk 4R, (x;€)

(3.4)

as ¢ — 0, where £ = Nz. This expansion breaks down as € = £ — [{] — 0 when
M > 1. An expansion equivalent to this has been given in [4]. The modified
version of this expansion obtained from (2.20) takes the form

7”;/4 7”/4 — 'I" + ) . r_J/
Sn(z,0) = N erf (e Ny/rx) + — Z: (L) — (mix)"¢.(8)
—a(e)—J;(\/]\;) e~ [eHmi/d o f (6_m/4€\/71'/$)
+€7Ti/4 *e_m'kQ/x + R (IL‘; 5), (35>
Ve k<& "

which remains valid in the neighbourhood of integer values of £&. We remark
that, when 6 = 0, the parameter £ can only equal an integer value when z is
a rational fraction; for irrational x the halving of the last term in the second
sum in (3.5) can never occur. As we have seen in §1, the case of rational x
for the quadratic Gauss sum is less challenging, since the trace of the terms in
this case presents a ‘block-symmetry’.
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' '
>» o,

© &

log,lerrorl

-10
-11
-12

5900 6000 6100 6200 6300 640
N

Figure 4: The absolute error (on a log;, scale) in the expansions (2.16) (solid
curve) and (2.20) (dashed curve) as a function of N when x = 1/(250,/3), 8 = 0.3
and n = 4. The small vertical marks denote the positions corresponding to & = 14
and & = 15.

Expansions of the higher-order Gauss sum Z;V:O exp (mizjP) valid in the
principal spiral prNP~1/2 < 1 have been given in [6, 15]. The expansion
(3.4) agrees with that obtained in [15, §4] in the special case p = 2 when
Nz < 1 (so that the second sum over k is empty). The expansion obtained
in [6] when p =2 and Nx < 1 also agrees with (3.4) when it is assumed that
N/(wx) is sufficiently large to justify use of the asymptotic expansion of the
complementary error function. In Table 3 we display the value of the absolute
error in the evaluation of Sy(x,0) by means of the regularised expansion (3.5)
for different values x and N, and in particular in the neighbourhood of integer
values of £ = Nzx.
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x = /500, N = 4500 x=1/400 N = 5201
n ¢ = 928.274 ¢ = 13.0025
1 3.623 x 10~ 1.057 x 10~6
2 2.256 x 10~ 1.923 x 1079
3 2.214 x 1078 5.285 x 10712
4 2.977 x 10710 1.887 x 10~ 14
z = 1/(250/7) N = 7100 | 2 = 1/(500/5) N = 1100

n ¢ =16.023 £ = 0.984

1 8.560 x 106 2.141 x 1075
p 1.446 x 10~8 8.904 x 10~°
3 3.597 x 10711 6.151 x 1012
4 1.163 x 10713 5.940 x 1013

591

Table 3: Values of the absolute error in the computation of Sy (z,0) by (3.5) for different
truncation index n.
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