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Abstract

This paper presents an explicit Takagi Factorization of a real sym-
metric tridiagonal matrix.
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1 Introduction

Complex symmetric matrices arise from many applications, such as chemical
exchange in nuclear magnetic resonance and power systems. Singular value de-
composition (SVD) reveals a great deal of properties of a matrix. A complex
symmetric matrix has a symmetric SVD (SSVD), also called Takagi Factoriza-
tion, which exploits the symmetry [3]. Let A be a complex symmetric matrix,
its Takagi factorization has the form:

A=UxU" (1.1)

where U is unitary and the ¥ diagonal singular value matrix. The columns of
U are called the Takagi vectors.

As the case of a general matrix, computing the Takagi Factorization of a
complex symmetric matrix consists of two stages: tridiagonalization and diag-
onalization. In the first stage, a complex symmetric matrix A is reduced to a
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complex symmetric tridiagonal T" using two-side Householder transformations
or Lanczos method [8,9]. In the second stage, the Takagi Factorization

T=UxU" (1.2)

of the complex symmetric tridiagonal T" resulted from the first stage is com-
puted. The methods for the second stage include the implicit QR method [9]
and the divide-andconquer method [12].

This paper presents a Takagi Factorization of a real symmetric tridiagonal
matrix.

2 Preliminaries

For the symmetric tridiagonal matrix

a by 0 .- 0
by as by . :
T=| 0 b - - o |eM®)
Lo by
0O -~ 0 b1 ay,

where {a; }1<i<n and {b;}1<i<n—1 are sequences of real numbers such that b; #
0 fori = 1,2,...,n — 1, we associate the polynomial sequence {P;}_1<;<p
characterized by a three-term recurrence relation

JZ'PZ(.%) = bi+1pi+1(l') + aiHPZ-(x) + biPi,l(:L’), 9, = 0, 1, e, = 1, (21)
with initial conditions P_i(z) = 0 and Py(z) = 1, where b, = by = 1. Let

put for ¢ > 0, Q; = (H bk) P;. Then the polynomial sequence {Q;}_1<i<n
k=0

characterized by a three-term recurrence relation
2Qi(2) = Qi1 () + a1 Qi) + b7 Qi1 (2). (2:2)

with with initial conditions Q_1(x) = 0 and Qy(z) = 1. By a theorem of
Favard [13] we know that the family of polynomials{Q;(x)} defined by (2.2) is
orthogonal with respect to a probability distribution F'(x). A standard result
in the theory of orthogonal polynomials (see [11,Theorem 3.2.1]) is that for
each i > 2, the zeros of @Q;(x) (an so for P;(x))are real, distinct, and separate
those of (;—1(x). We can write the relations (2.1) in a matrix form

2P,_1(x) =TP,_1(z) + P,(z)E,, (2.3)
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where P, (z) = [Po(z ), Pi(z ), ..., Pooa(z)]*,and £, =10, 0, ...0, 1]" €
R™ . If (Aj), <j<n_1 are the zeros of the polynomial F,, then it follows from
(2.2) that each ); is an eigenvalue of the corresponding tridiagonal matrix T
and

Po(N) = [Po(X; ), Pi(Aj ), -y Paca(N)]f

is a corresponding eigenvector. Hence the (monic) characteristic polynomial
of T is precisely Q,, i.e.,

Qn(x) = det(xl, = T) (Hm) . n=1,2,...,.

The polynomials {P;}_1<;<, verify the well known Christoffel-Darbouz for-
mula:

Lemma 2.1 We have

"R Ry = O OB P W) gy g2
) P, (z) P, (z) = P, (z) Py—y (z) — Py (z) P,y (2) . (2.5)

Proof. Using (2.1) we can write
(z = aiy1) Pi(z) = biPio1 () + bip1 Piga (2).
In particular,

(= aip1) Pi(z) P (y) = biPio1(2) P (y) + big1 P (2) Py (y)
(y — aiy1) Bi(2)Pi (y) = biPia(y)Pi(v) + big1 P (y) P (z)

This implies that

(y—x) Pi(2)Pi(y) = biPia(y)P(x) — bisa Pi (y) Piga ()
+bi1 P (y) Pi () — biP; (y) P ().

Hence
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=0 S P@PG) = BPAWPE) —bPas)Pa ()
b0 Pa(y) Pro1 (2) = boP-1 () Po (y) -
Finally,
(= 2) Y PP (3) = Paly) Pucs () — Paa(9) P (0).

Tending y to z we get formula (2.5). The proof is completed. O

Since all the eigenvalues A\, A1, ..., \,_1 of T are distincts, we can write

T =PDP™,

where D = diag(Ao , A1 ,...,An_1) and P is the transforming matrix. Namely
P = (pij = Pim1 (\j=1))1<ij<n -

Lemma 2.2

Pl= (8ij)1<ij<n 18 defined as follows:.

_ Piy (A1)
Sij = P ) Pas Ov)” (2.6)

n

Proof. By using 2.4) and (2.5) we obtain

i S — a Pi1 (Niz1) Pr—a ()\jfl) Y
ikPkj P Ovet) Bt (i) 0

k=1 k=1

where 6;; is the Kronecker symbol. The result follows. O

Lemma 2.3
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Let (Ar)o<p<n_i are the eigenvalues of T', then

PTIL ()\k) P, 4 ()\k) > ( for k = 0,1,....,n—1. (27)

Proof. Without loss of generality one can assume that

Ao < ATV N < < Anea < AU < Ay,
where <)\,(§"71)) are the roots of the polynomial P, ;. Since b, = 1,
0<k<n—2

from the relation (2.1), P, and P,_; has the same leading coefficient 5 € R.
We can write

n—1 n—2

P () = nBTT (e = A) and Py () = BT (2 = A"
=0 =0
ik

Assuming § > 0, then the sign of P! ()\;) is that of (—1)" and the sign of
P! (\) is that of (=1)" . The result follows. O

3 Main Result

Let the matrix tridiagonal

a by 0 .- 0
by ay by :
T = 0 by . - 0
S P S
0O -+~ 0 b1 ay,

where {a;}1<i<n—1 and {b;}1<i<n—1 are sequences of real numbers such that
bi#0Qforalln=12..n—1

Theorem 3.1 The Takagi Factorization of T is:

T=UxU",
where X = diag(Ao, A1, -y An—1); Ao, Ay - Ap_1 are the eigenvalues of T, and
U = (uij),<; j<,, Such that :
P (\_
(027 i 1( 1) (2'8)

- VP, (i) P (Nica)

Proof. The proof follow from Lemma 2.2. and Lemma 2.3.. O
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4 Example

A most important OPS is the Chebyshev polynomial of the second kind,
{Un},>0, which satisfies the three-term recurrence relations

20U, (z) = Upy1(x) + Up—a(x), n=1,2, ...,

with initial conditions Uy(x) = 1 and U;(z) = 2z. It is well known (cf. [4],

e.g.) that each U, also satisfies U, (x) = W ,x=-cos(f) (0<6<m)
and by consequent the zeros of U,, are cos <%>, [=0,1,...,n—1.

Let T be an n-by-n real tridiagonal Toeplitz matrix defined by

a b 0 --- 0
a b :
T=1|o 0 | € Ma(R),
: .. .. . b
0O -+ b b a

where b # 0. The polynomial sequence {P;}1<i<n—1 associated to T verifies
xPj(x) = 0Py (x) + aPy(x) + bP_1(x), i=0,1,2...,n—1,

with initial conditions P_;(z) = 0 and Py(z) = 1. By simple calculation we
can show that P;(z) = U, (%), 1 =0,...,n. The eigenvalues of T are

(+1)~

/\l:a+2bcos(
n+1

), 1=0,1,...,n—1.

Then:
T=UxUT,

where ¥ = diag(Xo , A1 , ..., A\p—1) and U = (u;;) such that :

L1 (M) - <”]—+1>

\/PA (ANi—1) Po1 (Niz1) \/(n +1)sin <(Z£> )

n+1

We leave the details to the reader.
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