
Applied Mathematical Sciences, Vol. 2, 2008, no. 46, 2289 - 2296

A Takagi Factorization of a

Real Symmetric Tridiagonal Matrix

Mohamed Elouafi

Preparatory Classes to High School Engineering
BP 3117, Souanni, Tangiers, Morocco

med elouafi@hotmail.com

Ahmed Driss Aiat Hadj

Preparatory Classes to High School Engineering
BP 3117, Souannim Tangiers, Morocco

ait hadj@yahoo.com

Abstract

This paper presents an explicit Takagi Factorization of a real sym-
metric tridiagonal matrix.
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1 Introduction

Complex symmetric matrices arise from many applications, such as chemical
exchange in nuclear magnetic resonance and power systems. Singular value de-
composition (SVD) reveals a great deal of properties of a matrix. A complex
symmetric matrix has a symmetric SVD (SSVD), also called Takagi Factoriza-
tion, which exploits the symmetry [3]. Let A be a complex symmetric matrix,
its Takagi factorization has the form:

A = UΣUT (1.1)

where U is unitary and the Σ diagonal singular value matrix. The columns of
U are called the Takagi vectors.

As the case of a general matrix, computing the Takagi Factorization of a
complex symmetric matrix consists of two stages: tridiagonalization and diag-
onalization. In the first stage, a complex symmetric matrix A is reduced to a
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complex symmetric tridiagonal T using two-side Householder transformations
or Lanczos method [8, 9]. In the second stage, the Takagi Factorization

T = UΣUT (1.2)

of the complex symmetric tridiagonal T resulted from the first stage is com-
puted. The methods for the second stage include the implicit QR method [9]
and the divide-andconquer method [12].

This paper presents a Takagi Factorization of a real symmetric tridiagonal
matrix.

2 Preliminaries

For the symmetric tridiagonal matrix

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 b1 0 · · · 0

b1 a2 b2
. . .

...

0 b2
. . .

. . . 0
...

. . .
. . .

. . . bn−1

0 · · · 0 bn−1 an

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ Mn(R),

where {ai}1≤i≤n and {bi}1≤i≤n−1 are sequences of real numbers such that bi �=
0 for i = 1, 2, ..., n − 1, we associate the polynomial sequence {Pi}−1≤i≤n

characterized by a three-term recurrence relation

xPi(x) = bi+1Pi+1(x) + ai+1Pi(x) + biPi−1(x), i = 0, 1, . . . , n − 1, (2.1)

with initial conditions P−1(x) = 0 and P0(x) = 1, where bn = b0 = 1. Let

put for i ≥ 0, Qi =

(
i∏

k=0

bk

)
Pi. Then the polynomial sequence {Qi}−1≤i≤n

characterized by a three-term recurrence relation

xQi(x) = Qi+1(x) + ai+1Qi(x) + b2
i Qi−1(x). (2.2)

with with initial conditions Q−1(x) = 0 and Q0(x) = 1. By a theorem of
Favard [13] we know that the family of polynomials{Qi(x)} defined by (2.2) is
orthogonal with respect to a probability distribution F (x). A standard result
in the theory of orthogonal polynomials (see [11,Theorem 3.2.1]) is that for
each i ≥ 2, the zeros of Qi(x) (an so for Pi(x))are real, distinct, and separate
those of Qi−1(x). We can write the relations (2.1) in a matrix form

xPn−1(x) = TPn−1(x) + Pn(x)En, (2.3)
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where Pn−1(x) = [P0(x ), P1(x ), . . . , Pn−1(x )]t , and En = [0, 0, . . .0 , 1]t ∈
R

n . If (λj)0≤j≤n−1 are the zeros of the polynomial Pn, then it follows from
(2.2) that each λj is an eigenvalue of the corresponding tridiagonal matrix T
and

Pn−1(λj) = [P0(λj ), P1(λj ), . . . , Pn−1(λj )]t

is a corresponding eigenvector. Hence the (monic) characteristic polynomial
of T is precisely Qn, i.e.,

Qn(x) = det(xIn − T ) =

(
n∏

k=0

bk

)
Pn, n = 1, 2, ..., .

The polynomials {Pi}−1≤i≤n verify the well known Christoffel-Darboux for-
mula:

Lemma 2.1 We have

n−1∑
i=0

Pi (x) Pi (y) =
Pn (y)Pn−1 (x) − Pn (x) Pn−1 (y)

x − y
for x �= y. (2.4)

n−1∑
i=0

Pi (x) Pi (x) = P ′
n (x) Pn−1 (x) − Pn (x) P ′

n−1 (x) . (2.5)

Proof. Using (2.1) we can write

(x − ai+1) Pi(x) = biPi−1(x) + bi+1Pi+1(x).

In particular,

(x − ai+1) Pi(x)Pi (y) = biPi−1(x)Pi (y) + bi+1Pi+1(x)Pi (y) ,

(y − ai+1) Pi(x)Pi (y) = biPi−1(y)Pi (x) + bi+1Pi+1(y)Pi (x) .

This implies that

(y − x) Pi(x)Pi (y) = biPi−1(y)Pi (x) − bi+1Pi (y)Pi+1(x)

+bi+1Pi+1(y)Pi (x) − biPi (y)Pi−1(x).

Hence
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(y − x)

n−1∑
i=0

Pi(x)Pi (y) = b0P−1(y)P0 (x) − bnPn−1(y)Pn (x)

+bnPn(y)Pn−1 (x) − b0P−1(x)P0 (y) .

Finally,

(y − x)

n−1∑
i=0

Pi(x)Pi (y) = Pn(y)Pn−1 (x) − Pn−1(y)Pn (x) .

Tending y to x we get formula (2.5). The proof is completed. �

Since all the eigenvalues λ0, λ1, ..., λn−1 of T are distincts, we can write

T = PDP−1,

where D = diag(λ0 , λ1 ,...,λn−1) and P is the transforming matrix. Namely
P = (pij = Pi−1 (λj−1))1≤i;j≤n .

Lemma 2.2

P−1 = (sij)1≤i;j≤n is defined as follows:.

sij =
Pj−1 (λi−1)

P ′
n (λi−1)Pn−1 (λi−1)

. (2.6)

Proof. By using 2.4) and (2.5) we obtain

n∑
k=1

sikpkj =
n∑

k=1

Pk−1 (λi−1) Pk−1 (λj−1)

P ′
n (λi−1)Pn−1 (λi−1)

= δij ,

where δij is the Kronecker symbol. The result follows. �

Lemma 2.3
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Let (λk)0≤k≤n−1 are the eigenvalues of T, then

P ′
n (λk) Pn−1 (λk) > 0 for k = 0, 1, ..., n − 1. (2.7)

Proof. Without loss of generality one can assume that

λ0 < λ
(n−1)
0 < λ1 < ........ < λn−2 < λ

(n−1)
n−2 < λn−1,

where
(
λ

(n−1)
k

)
0≤k≤n−2

are the roots of the polynomial Pn−1. Since bn = 1,

from the relation (2.1), Pn and Pn−1 has the same leading coefficient β ∈ R.
We can write

P ′
n (λk) = nβ

n−1∏
i=0
i�=k

(λk − λi) and Pn−1 (λk) = β
n−2∏
j=0

(
λk − λ

(n−1)
i

)

Assuming β > 0, then the sign of P ′
n (λk) is that of (−1)k and the sign of

P ′
n−1 (λk) is that of (−1)k . The result follows. �

3 Main Result

Let the matrix tridiagonal

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 b1 0 · · · 0

b1 a2 b2
. . .

...

0 b2
. . .

. . . 0
...

. . .
. . .

. . . bn−1

0 · · · 0 bn−1 an

⎞
⎟⎟⎟⎟⎟⎟⎠

where {ai}1≤i≤n−1 and {bi}1≤i≤n−1 are sequences of real numbers such that
bi �= 0 for all n = 1, 2, ..., n − 1.

Theorem 3.1 The Takagi Factorization of T is:

T = UΣUT ,

where Σ = diag(λ0, λ1, ..., λn−1), λ0, λ1, ..., λn−1 are the eigenvalues of T, and
U = (uij)1≤i,j≤n such that :

uij =
Pj−1 (λi−1)√

P ′
n (λi−1) Pn−1 (λi−1)

. (2.8)

Proof. The proof follow from Lemma 2.2. and Lemma 2.3.. �
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4 Example

A most important OPS is the Chebyshev polynomial of the second kind,
{Un}n≥0, which satisfies the three-term recurrence relations

2xUn(x) = Un+1(x) + Un−1(x), n = 1, 2, ...,

with initial conditions U0(x) = 1 and U1(x) = 2x. It is well known (cf. [4],

e.g.) that each Un also satisfies Un(x) = sin((n+1)θ)
sin(θ)

, x = cos (θ) (0 ≤ θ < π)

and by consequent the zeros of Un are cos
(

(l+1)π
n+1

)
, l = 0, 1, ..., n − 1.

Let T be an n-by-n real tridiagonal Toeplitz matrix defined by

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

a b 0 · · · 0

b a b
. . .

...

0 b
. . .

. . . 0
...

. . .
. . .

. . . b
0 · · · b b a

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ Mn(R),

where b �= 0. The polynomial sequence {Pi}1≤i≤n−1 associated to T verifies

xPi(x) = bPi+1(x) + aPi(x) + bPi−1(x), i = 0, 1, 2 . . . , n − 1,

with initial conditions P−1(x) = 0 and P0(x) = 1. By simple calculation we
can show that Pi(x) = Un

(
x−a
2b

)
, i = 0, ..., n. The eigenvalues of T are

λl = a + 2b cos

(
(l + 1) π

n + 1

)
, l = 0, 1, ..., n − 1.

Then:

T = UΣUT ,

where Σ = diag(λ0 , λ1 , ..., λn−1) and U = (uij) such that :

uij =
Pj−1 (λi−1)√

P ′
n (λi−1) Pn−1 (λi−1)

=
sin
(

(ij)π
n+1

)
√

(n + 1) sin
(

(i)π
n+1

) .

We leave the details to the reader.
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