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Abstract 

 

In this paper deals with perishable commodities or products that are prone to 

obsolescence face a significant difficulty in effectively managing their inventory of 

deteriorating materials. When considering complex real-world circumstances, like 

nonlinear demand patterns and the deterioration of things over time, traditional 

Economic Order Quantity (EOQ) models frequently fail. To properly represent the 

time-varying degradation of goods, this paper suggests an improved EOQ model that 

includes Weibull deterioration and nonlinear demand, represented as a cubic function. 

By combining variables including real-time demand variations, item condition, and 

environmental elements that affect deterioration, edge computing facilitates quicker 

decision-making. We explain how this integrated method ensures optimal stock 

availability while minimizing overall inventory expenses, including holding, 

ordering, and deterioration costs. 

 

 

Keywords: Edge computing; Cubic demand; Salvage value; Three-factor Weibull 

distribution 
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1. Introduction 

 
       In essence, decreasing obsolescence and depreciation expenses is at the heart of 

this research paper. Industrial stocks inventory can be connected with two elements, 

these are; holding and obsolescence costs reminding the former of what should be 

maintained with the potential of depreciation. Indeed, that highlighting the fact that 

both items are linked, it is crucial to value conceived Revenue streams forecasting 

and demand planning beforehand. EOQ, as a matter of fact, is hardly ever a solution 

in itself since EOQ consists of changeable elements which expand and shrink 

together. Most importantly, there is a strong correlation among non-linear demand, an 

interaction with a product and obsolescence/deterioration factors making it crucial to 

represent an item as a cubic function. Therefore, this particular paper is dedicated to 

triangulating how considering Weibull deterioration and a non-linear demand 

function in an EOQ improves the overall performance of a CP that is considering a 

multi-dimensional approach focusing on cutting obsolescence as a Capital-intensive 

race. 

          Inventory control is a crucial element of advanced material flow chains, 

primarily for businesses handling perishable or degradable goods, including 

foodstuffs, medicine, and chemicals. Conventional inventory theories, including the 

Economic Order Quantity (EOQ), have been extensively used in managing 

procurement strategies with an aim of minimizing total acquisition costs, carrying 

costs, ordering costs and stock out costs. Nevertheless, these models tend to make the 

demand rate a constant and do not consider the time variable, which depicts a major 

disadvantage whenever there is fluctuating demand and goods are perishable. 

  A degrading item with an instantaneous supply, quadratic time-varying demand, and 

shortages was introduced by Ghosh and Chaudhuri [2004]. When supplier credits are 

linked to order quantity size for deteriorating items with time-varying demand and 

deterioration rates, Chang [2004] created an EOQ model with deteriorating items 

under inflation. Balkhi and Alamri [2007] Learning and forgetting's effects on the 

ideal production lot size for degrading items with fluctuating demand and rates of 

degradation over time. ideal selling price and lot size with a variable rate of 

deterioration and exponential partial backlog, according to Dye et al. [2007]. An 

inventory model for degrading items with time-varying holding costs and price-

dependent demand was created by Ajanta Roy [2008]. ideal selling price and lot size 

with a variable rate of deterioration and exponential partial backlog, according to Dye 

et al. [2007]. The EOQ inventory model for Weibull distributed deteriorating items 

under ramp-type demand and shortages was examined by Biswaranjan-Mandal 

[2010]. An EOQ model was developed by Sahoo et al. [2010] for time-varying 

holding costs and price-dependent demand rates. An inventory model for ramp-type 

demand and time-dependent decaying items with salvage value and shortages is 

discovered by Mishra and Singh [2011]. An inventory model for deteriorating items  
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with a time-varying deterioration rate and exponentially declining demand was 

recently established by Aliyu & Sani [2018]. Later, Sahoo, Paul, and Kumar [2020] 

designed Two-Warehouse EOQ Model for deteriorating goods with demand rate is 

Exponentially   Decreasing, Limited Suspension in Price and Salvage Value. Next, 

Sahoo, Paul, and Kalam [2020] developed an EOQ model for deteriorating items with 

cubic demand, variable declination, and discriminatory backlogging. Following that, 

Sahoo and Paul [2021] tracked an EOQ model for the cubic rate of deteriorating 

products, encouraging the maintenance of Weibull requisition and the absence of 

scarcity. Next, using a three-parameter Weibull Distribution Deterioration Rate, 

Scarcity, and Salvage Value, the researchers Paul, Sahoo, and Sarangi [2022] created 

an optimal policy for a model whose demand rate is a parabolic function of time. 

Additionally, Sahoo, Paul, and Sahoo [2021] created an EOQ model in which the 

salvage value, time, and shortages permitted are three parameters of the Weibull 

Distribution function of demand as a cubic function of time with deterioration rate.  

         Edge computing as a way of working with data closer to where they are 

produced (from sensors or other devices) decreases response time while also 

improving the quality of decision making, as it enables near real-time status of 

inventory, demand, and deterioration. Such filtering of COs provides a decentralized 

approach to managing inventories in more efficient and responsive ways, especially 

for issues with deteriorating items or nonlinear demand (Bai et al., 2018). 

      To this end, this paper presents an original EOQ optimization model that 

considers nonlinear demand and Weibull deterioration for deteriorating items using 

edge computing for real-time decisions. The objective is to create a model by which 

the quantity of orders can change with deterioration rate and fluctuations in demand 

to economize costs and resources. The subsequent sections provide a review of the 

literature on EOQ optimization for deteriorating items, demand nonlinearities, and 

Weibull deterioration, as well as the ability of edge computing to support 

optimization in such applications. A sensitivity analysis of the optimal solution is 

provided to illustrate the model. The main objective of this model is to find an 

optimal order quantity, minimizing the total inventory time. 

 
2. Notations and assumptions 

 
In framing the proposed model, the following notations and assumptions are listed: 

2.1 Notations 

 𝐷(𝑡): Cubic demand function. 

 𝜃: 𝑇hree parameter Weibull deterioration rate. 

 𝐻𝐶:  Linear function of holding cost, 𝐻(𝑡) = 𝑝 + 𝑞𝑡;   𝑝 > 0, 𝑞 > 0. 
 𝐶1: Cost per item. 

 𝐷𝐶: Deteriorating cost of each order. 

 𝑆𝐶: 𝑃er order’s ordering price. 
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 𝑆𝑉: Salvage value of each item per unit of time.  

 𝐼(𝑡): 𝑇he level of inventories at the time.  

 𝑄:The optimum level of inventory in the period [0, T] 

 𝑇:  The time boundary of each cycle. 

 𝑇𝐶: 𝑇he total inventory variable cost of the presented model. 

 

2.2 Assumptions 

 Present model deliberates only for a single product.  

 Time-dependent cubic demand function, i.e.𝐷(𝑡) = 𝑎 + 𝑏𝑡 + 𝑐𝑡2 + 𝑑𝑡3, 𝑎 ≥
0, 𝑏 ≠ 0, 𝑐 ≠ 0, 𝑑 ≠ 0. 
where ′𝑎′ is represents the baseline demand when t = 0. 

 ′𝑏′ is the slope of the demand function at t = 0, 

′𝑐′  represents the curvature of the demand function, 

 and 𝑑 is the non-linear variations in demand, such as inflection points where 

the curvature changes from convex to concave. 

 Rate of deterioration  𝜃 =γ𝜆(𝑡 − 𝜇)𝜆−1, 𝛾 > 0, 𝜆 > 1. 
Where ′𝛾′ parameter scales the entire deterioration rate,′𝜆′ is the parameter 

that determines the rate of change of the deterioration rate with respect to t, 

𝑎𝑛𝑑  𝜇 shifts the deterioration rate curve along the t-axis. 

 Fixed length of time is considered. 

 Considered a linear function of time as holding cost.  

 Considered 𝜂𝐶1 as salvage value, where  0 ≤ 𝜂 ≤ 1  and  𝜂 is the deteriorated 

units in the period [0, T].  

 

3. Formulation of Mathematical Model and Analysis 

 
                 Suppose  𝐼(𝑡) is the level of inventory at the variable time t. Using the 

above assumptions and notations, we have formulated the differential equation in the 

interval of time [0, T], that are represented below:   
𝑑𝐼(𝑡)

𝑑𝑡
+ 𝜃𝐼(𝑡) = −𝐷(𝑡), 0 ≤ 𝑡 ≤ 𝑇        

⟹
𝑑𝐼(𝑡)

𝑑𝑡
+ 𝛾𝜆(𝑡 − 𝜇)𝜆−1𝐼(𝑡) = −(𝑎 + 𝑏𝑡 + 𝑐𝑡2 + 𝑑𝑡3), 0 ≤ 𝑡 ≤ 𝑇                         (1) 

 Inputting condition I(T)= 0 in equation (1), we obtain:    

 

𝐼(𝑡) = {
𝑎(𝑇 − 𝑡) +

𝑏

2
(𝑇2 − 𝑡2)

+
𝑐

3
(𝑇3 − 𝑡3) +

𝑑

4
(𝑇4 − 𝑡4)

} + 𝛾

{
 
 

 
 (𝑎 + 𝑏𝜇 + 𝑐𝜇2 + 𝑑𝜇3) (

(𝑇−𝜇)(𝜆+1)

𝜆+1
)

+(𝑏 + 2𝑐𝜇 + 3𝑑𝜇2) (
(𝑇−𝜇)𝜆+2

𝜆+2
)

+(𝑐 + 3𝑑𝜇) (
(𝑇−𝜇)𝜆+3

𝜆+3
) + 𝑑 (

(𝑇−𝜇)𝜆+4

𝜆+4
)}
 
 

 
 

𝑒−𝛾(𝑡−𝜇)
𝜆
   

−𝛾 {
(𝑎 + 𝑏𝜇 + 𝑐𝜇2 + 𝑑𝜇3) (

(𝑡−𝜇)(𝜆+1)

𝜆+1
) + (𝑏 + 2𝑐𝜇 + 3𝑑𝜇2) (

(𝑡−𝜇)𝜆+2

𝜆+2
)

+(𝑐 + 3𝑑𝜇) (
(𝑡−𝜇)𝜆+3

𝜆+3
) + 𝑑 (

(𝑡−𝜇)𝜆+4

𝜆+4
)

} 𝑒−𝛾(𝑡−𝜇)
𝜆
  (2) 
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Next, we have to input the condition I (0) = Q in equation (2), then it reduces to the 

  

form,Q= 𝑎𝑇 +
𝑏𝑇2

2
+

𝑐𝑇3

3
+

𝑑𝑇4

4
+ 𝛾

{
 
 

 
 (𝑎 + 𝑏𝜇 + 𝑐𝜇2 + 𝑑𝜇3) (

(𝑇−𝜇)(𝜆+1)

𝜆+1
)

+(𝑏 + 2𝑐𝜇 + 3𝑑𝜇2) (
(𝑇−𝜇)𝜆+2

𝜆+2
)

+(𝑐 + 3𝑑𝜇) (
(𝑇−𝜇)𝜆+3

𝜆+3
) + 𝑑 (

(𝑇−𝜇)𝜆+4

𝜆+4
)}
 
 

 
 

𝑒−𝛾(𝑡−𝜇)
𝜆
  

              −𝛾 {
(𝑎 + 𝑏𝜇 + 𝑐𝜇2 + 𝑑𝜇3) (

(−𝜇)(𝜆+1)

𝜆+1
) + (𝑏 + 2𝑐𝜇 + 3𝑑𝜇2) (

(−𝜇)𝜆+2

𝜆+2
)

+(𝑐 + 3𝑑𝜇) (
(−𝜇)𝜆+3

𝜆+3
) + 𝑑 (

(−𝜇)𝜆+4

𝜆+4
)

} 𝑒−𝛾(𝑡−𝜇)
𝜆
. (3) 

 

Different components of TC are represented below:  

 

(i) Calculating the cost of holding the items in the period [0, T] is 

represented as, 

            𝐻𝐶 =
1

𝑇
∫ 𝐻(𝑡)
𝑇

0
𝐼(𝑡)𝑑𝑡  = (𝑝 +

𝑞𝑇

2
)

[
 
 
 
 
 
 
 
 
 
 

𝛾

{
 
 

 
 (𝑎 + 𝑏𝜇 + 𝑐𝜇2 + 𝑑𝜇3) (

(𝑇−𝜇)(𝜆+1)

𝜆+1
)

+(𝑏 + 2𝑐𝜇 + 3𝑑𝜇2) (
(𝑇−𝜇)𝜆+2

𝜆+2
)

+(𝑐 + 3𝑑𝜇) (
(𝑇−𝜇)𝜆+3

𝜆+3
) + 𝑑 (

(𝑇−𝜇)𝜆+4

𝜆+4
)}
 
 

 
 

𝑒−𝛾(−𝜇)
𝜆

−𝛾

{
 
 

 
 (𝑎 + 𝑏𝜇 + 𝑐𝜇2 + 𝑑𝜇3) (

(𝑡−𝜇)(𝜆+1)

𝜆+1
)

+(𝑏 + 2𝑐𝜇 + 3𝑑𝜇2) (
(𝑡−𝜇)𝜆+2

𝜆+2
)

+(𝑐 + 3𝑑𝜇) (
(𝑡−𝜇)𝜆+3

𝜆+3
) + 𝑑 (

(𝑡−𝜇)𝜆+4

𝜆+4
)}
 
 

 
 

𝑒−𝛾(−𝜇)
𝜆

]
 
 
 
 
 
 
 
 
 
 

.  (4) 

(ii) The quantity of deteriorated units (K) within the period [0, T] is represented as   

     𝐾 = 𝑄 − ∫ 𝐷(𝑡)
𝑇

0
dt 

=

[
 
 
 
 
 
 
𝛾 {
(𝑎 + 𝑏𝜇 + 𝑐𝜇2 + 𝑑𝜇3) (

(𝑇−𝜇)(𝜆+1)

𝜆+1
) + (𝑏 + 2𝑐𝜇 + 3𝑑𝜇2) (

(𝑇−𝜇)𝜆+2

𝜆+2
)

+(𝑐 + 3𝑑𝜇) (
(𝑇−𝜇)𝜆+3

𝜆+3
) + 𝑑 (

(𝑇−𝜇)𝜆+4

𝜆+4
)

} 𝑒−𝛾(−𝜇)
𝜆

−𝛾 {
(𝑎 + 𝑏𝜇 + 𝑐𝜇2 + 𝑑𝜇3) (

(𝑡−𝜇)(𝜆+1)

𝜆+1
) + (𝑏 + 2𝑐𝜇 + 3𝑑𝜇2) (

(𝑡−𝜇)𝜆+2

𝜆+2
)

+(𝑐 + 3𝑑𝜇) (
(𝑡−𝜇)𝜆+3

𝜆+3
) + 𝑑 (

(𝑡−𝜇)𝜆+4

𝜆+4
)

} 𝑒−𝛾(−𝜇)
𝜆

]
 
 
 
 
 
 

.  (5) 

(iii) The deteriorated cost (DC) in the period [0, T] is represented as 

                            𝐷𝐶 =
𝑡ℎ𝑒 𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡  𝑜𝑓 𝑖𝑡𝑒𝑚

𝑇
𝐾 =

𝑐1

𝑇
[𝑄 − ∫ 𝐷(𝑡)𝑑𝑡]

𝑇

0
 

=
𝑐1

𝑇

[
 
 
 
 
 
 
𝛾 {
(𝑎 + 𝑏𝜇 + 𝑐𝜇2 + 𝑑𝜇3) (

(𝑇−𝜇)(𝜆+1)

𝜆+1
) + (𝑏 + 2𝑐𝜇 + 3𝑑𝜇2) (

(𝑇−𝜇)𝜆+2

𝜆+2
)

+(𝑐 + 3𝑑𝜇) (
(𝑇−𝜇)𝜆+3

𝜆+3
) + 𝑑 (

(𝑇−𝜇)𝜆+4

𝜆+4
)

} 𝑒−𝛾(−𝜇)
𝜆
 

−𝛾 {
(𝑎 + 𝑏𝜇 + 𝑐𝜇2 + 𝑑𝜇3) (

(𝑡−𝜇)(𝜆+1)

𝜆+1
) + (𝑏 + 2𝑐𝜇 + 3𝑑𝜇2) (

(𝑡−𝜇)𝜆+2

𝜆+2
)

+(𝑐 + 3𝑑𝜇) (
(𝑡−𝜇)𝜆+3

𝜆+3
) + 𝑑 (

(𝑡−𝜇)𝜆+4

𝜆+4
)

}𝑒−𝛾(−𝜇)
𝜆

]
 
 
 
 
 
 

.  (6) 

(iv) The cost of ordering items in the period [0, T] is represented as 𝑺𝑪 =
𝑨

𝑻
  (7) 

(v) Salvage value (SV) in the period of [0, T] is represented as   
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     𝑆𝑉 =
𝜂𝐶1

𝑇
[Q-∫ 𝐷(𝑡)𝑑𝑡]

𝑇

0
 

=
𝜂𝑐1

𝑇

[
 
 
 
 
 
 
𝛾 {
(𝑎 + 𝑏𝜇 + 𝑐𝜇2 + 𝑑𝜇3) (

(𝑇−𝜇)(𝜆+1)

𝜆+1
) + (𝑏 + 2𝑐𝜇 + 3𝑑𝜇2) (

(𝑇−𝜇)𝜆+2

𝜆+2
)

+(𝑐 + 3𝑑𝜇) (
(𝑇−𝜇)𝜆+3

𝜆+3
) + 𝑑 (

(𝑇−𝜇)𝜆+4

𝜆+4
)

} 𝑒−𝛾(−𝜇)
𝜆
 

−𝛾 {
(𝑎 + 𝑏𝜇 + 𝑐𝜇2 + 𝑑𝜇3) (

(𝑡−𝜇)(𝜆+1)

𝜆+1
) + (𝑏 + 2𝑐𝜇 + 3𝑑𝜇2) (

(𝑡−𝜇)𝜆+2

𝜆+2
)

+(𝑐 + 3𝑑𝜇) (
(𝑡−𝜇)𝜆+3

𝜆+3
) + 𝑑 (

(𝑡−𝜇)𝜆+4

𝜆+4
)

} 𝑒−𝛾(−𝜇)
𝜆

]
 
 
 
 
 
 

.  (8) 

𝑇𝑜𝑡𝑎𝑙 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡(𝑇𝐶) =
1

𝑇
 (𝑂𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 +  ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 +

𝑑𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 +  𝑠𝑒𝑡𝑢𝑝 𝑐𝑜𝑠𝑡 − 𝑠𝑎𝑙𝑣𝑎𝑔𝑒 𝑣𝑎𝑙𝑢𝑒 ) =
1

𝑇
(𝑆𝐶 + 𝐻𝐶 + 𝐷𝐶 + 𝑆𝑉) 

 = 𝐴

𝑇
+ [(𝑝 +

𝑞𝑇

2
)(

𝑎𝑇 +
𝑏𝑇2

2

+
𝑐𝑇3

3
+

𝑑𝑇4

4

)]𝑒−∝(−𝜇)
𝜆
+ (

𝑝 +
𝑞𝑇

2

+
𝑐1

𝑇
+

𝜂𝑐1

𝑇

) 

[
𝛾 {(𝑎 + 𝑏𝜇 + 𝑐𝜇2 + 𝑑𝜇3) (

(𝑇−𝜇)(𝜆+1)

𝜆+1
) + (𝑏 + 2𝑐𝜇 + 3𝑑𝜇2) (

(𝑇−𝜇)𝜆+2

𝜆+2
) + (𝑐 + 3𝑑𝜇) (

(𝑇−𝜇)𝜆+3

𝜆+3
) + 𝑑 (

(𝑇−𝜇)𝜆+4

𝜆+4
)} 𝑒−𝛾(−𝜇)

𝜆
 

−𝛾 {(𝑎 + 𝑏𝜇 + 𝑐𝜇2 + 𝑑𝜇3) (
(𝑡−𝜇)(𝜆+1)

𝜆+1
) + (𝑏 + 2𝑐𝜇 + 3𝑑𝜇2) (

(𝑡−𝜇)𝜆+2

𝜆+2
) + (𝑐 + 3𝑑𝜇) (

(𝑡−𝜇)𝜆+3

𝜆+3
) + 𝑑 (

(𝑡−𝜇)𝜆+4

𝜆+4
)} 𝑒−𝛾(−𝜇)

𝜆
]. (9)

  

For minimization of TC, must satisfy the conditions;  𝜕(𝑇𝐶)
𝜕𝑇

= 0 and   
𝜕2(𝑇𝐶)

𝜕𝑇2
> 0 and 

for all T > 0. 
𝜕(𝑇𝐶)

𝜕𝑇
=
−𝐴

𝑇2
+ {𝑝(𝑎 + 𝑏𝑇 + 𝑐𝑇2 + 𝑑𝑇3) + 𝑞 (𝑎𝑇 +

3

4
𝑏𝑇2 +

2

3
𝑐𝑇3 +

5

8
𝑑𝑇4)} 𝑒−𝛾

(−𝜇)𝜆 

+𝛾

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑎 {𝑝(𝑇 − 𝜇)

𝜆 + (
𝑞

2
+
−1

𝑇2
(𝜂𝑐1 + 𝑐1)) (

(𝑇−𝜇)𝜆+1

𝜆+1
)} + (

𝑞

2
𝑇 +

1

𝑇
(𝜂𝑐1 + 𝑐1)) (𝑇 − 𝜇)

𝜆 + (
1

𝑇2
(𝜂𝑐1 + 𝑐1) −

𝑞

2
) (

(−𝜇)𝜆+1

𝜆+1
)

+𝑏

{
 
 

 
 (𝑝 +

𝑞𝑇

2
+
(𝜂𝑐1+𝑐1)

𝑇
) (𝑇 − 𝜇)𝜆+1 + (𝑝 +

𝑞𝑇

2
+
(𝜂𝑐1+𝑐1)

𝑇
)  𝜇(𝑇 − 𝜇)𝜆 (

𝑞

2
−
𝜂𝑐1+𝑐1

𝑇2
)(𝜇 (

(𝑇−𝜇)𝜆+1

𝜆+1
) + (

(𝑇−𝜇)𝜆+2

𝜆+2
))

+(−
𝑞

2
+
𝜂𝑐1+𝑐1

𝑇2
)((

(−𝜇)𝜆+2

𝜆+2
) + 𝜇 (

(−𝜇)𝜆+1

𝜆+1
))

}
 
 

 
 

+𝑐 {

(𝑝 +
𝑞𝑇

2
+
(𝜂𝑐1+𝑐1)

𝑇
) ((𝑇 − 𝜇)𝜆+2 + 2𝜇(𝑇 − 𝜇)𝜆+1 + 𝜇2(𝑇 − 𝜇)𝜆) + (

𝑞

2
−
(𝜂𝑐1+𝑐1)

𝑇2
) (

(𝑇−𝜇)𝜆+3

𝜆+3
) + 2𝜇 (

(𝑇−𝜇)𝜆+2

𝜆+2
)

+𝜇2 (
(𝑇−𝜇)𝜆+1

𝜆+1
) + (−

𝑞

2
+
(𝜂𝑐1+𝑐1)

𝑇2
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(−𝜇)𝜆+3

𝜆+3
+ 2𝜇 (

(−𝜇)𝜆+2

𝜆+2
) + (

(−𝜇)𝜆+1

𝜆+1
))

}

+𝑑

{
  
 

  
 (𝑝 +

𝑞𝑇

2
+
𝑐1+𝜂𝑐1

𝑇
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(
𝑞

2
−
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(𝑇−𝜇)𝜆+4

𝜆+4
) + 3𝜇 (

(𝑇−𝜇)𝜆+3

𝜆+3
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𝜆+2
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𝜆+1
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𝑞

2
+
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(−𝜇)𝜆+4

𝜆+4
) + 3𝜇 (

(−𝜇)𝜆+3

𝜆+3
) + 3𝜇2 (

(−𝜇)𝜆+2

𝜆+2
) + 𝜇3 (

(−𝜇)𝜆+1

𝜆+1
))

}
  
 

  
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑒−𝛾(−𝜇)
𝜆
. (10) 

 

Since equation (10) is in nonlinear form, it is difficult to solve it by using an 

analytical process. So, we have solved it using a computational process. The 

following example, represented below, was solved by using Mathematica 12.0. 

 

4. Numerical Example 

 

To illustrate the Model development through a numerical example related to 

the aforementioned parameters is presented here. Let us considered the value of A= 

500, a= 20, b= 15, c= 10, d= 5, 𝛾 = 0.5, 𝜆 = 0.6, 𝜇 = 0.7, 𝑝 = 0.2, 𝑞 = 0.4, 𝜂 =
0.1, 𝑐1=5.  Substituting the above parameter values in equations (10), (3), and (9) and 

simplifying them, we obtain T =0.45791, Q =326.14625, and 𝑇𝐶∗=572.56231.  

Given data contains the following parameters; 
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Table 
parameters % change value T TC Q 

 
 

a 

50 30 0.26141 487.2351 305.17292 

25 25 0.32912 501.8732 312.45271 

0 20 0.45791 572.56231 326.14625 

-25 15 0.58932 683.1432 418.274 

-50 10 0.65213 781.2359 537.629 

 
 

b 

50 22.5 0.51301 583.21563 318.54624 

25 18.75 0.47152 578.53624 323.48913 

0 15 0.45791 572.56231 326.14625 

-25 11.25 0.39213 564.23924 329.14382 

-50 7.5 0.34634 558.15625 334.52314 

 
 
c 

50 22.5 0.51243 583.21563 318.54624 

25 18.75 0.47132 578.53624 323.48913 

0 15 0.45791 572.56231 326.14625 

-25 11.25 0.39214 564.23923 329.14382 

-50 7.5 0.34633 558.15622 334.52314 

 
 

d 

50 7.5 0.53254 628.6381 478.56122 

25 6.5 0.48262 596.9204 439.28534 

0 5 0.45791 572.56231 326.14625 

-25 3.75 0.23153 516.5413 280.21663 

-50 2.5 0.19561 483.9472 253.20214 

 
 
𝛾 

50 0.75 0.29354 753.19523 392.52541 

25 0.625 0.38513 685.23582 356.20543 

0 0.5 0.45791 572.56231 326.14625 

-25 0.375 0.52162 492.25614 308.06782 

-50 0.250 0.59234 413.79991 283.57181 

 
 
 
𝜆 

50 0.9 0.83913 729.50423 281.16044 

25 0.75 0.63014 657.11921 258.04613 

0 0.6 0.45791 572.56231 326.14625 

-25 0.45 0.25472 487.62182 359.05482 

-50 0.3 0.10283 413.82131 378.05712 

 
 
𝜇 

50 1.05 0.42163 619.13472 312.28591 

25 0.875 0.44294 592.66174 318.92023 

0 0.7 0.45791 572.56231 326.14625 

-25 0.525 0.45963 546.62853 331.62854 

-50 0.35 0.46314 532.80334 336.86282 

 
 

p 

50 0.3 0.25614 752.13463 392.19624 

25 0.25 0.36921 682.92172 379.23152 

0 0.2 0.45791 572.56231 326.14625 

-25 0.15 0.58913 478.23691 313.42913 

-50 0.1 0.63272 413.28914 216.13822 

 
 

q 

50 0.6 0.23163 448.23164 412.36913 

25 0.5 0.32592 483.16924 368.58932 

0 0.4 0.45791 572.56231 326.14625 

-25 0.3 0.56913 593.21673 308.17231 

-50 0.2 0.62344 621.62152 289.79134 

 
 
𝜂 

50 0.15 0.46233 515.23183 305.43873 

25 0.125 0.45924 538.21562 314.30762 

0 0.1 0.45791 572.56231 326.14625 

-25 0.075 0.45322 589.72853 338.95671 

-50 0.05 0.45023 603.73681 346.95843 

 
 
𝐶1 

50 7.5 0.20814 620.17934 289.25291 

25 6.25 0.32793 592.98534 312.75804 

0 5 0.45791 572.56231 326.14625 

-25 3.75 0.57532 546.25153 338.21623 

-50 2.5 0.68041 531.19661 346.06391 
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Sensitivity analysis 

In this section we have discussed sensitivity analysis of the system parameters 

𝑎, 𝑏, 𝑐, 𝑑, 𝛾, 𝜆, 𝜇, 𝑐1,𝑝, 𝑞 on the total optimal inventory cost. The sensitivity analysis is 

also carried out to examine the effect of change of every parameters value from   

+50% to -50%, and considering single factor at the time of computing and hold the 

outstanding parameters are not unaffected. A sensitivity analysis gauges how the 

changes of input parameters influence the results of a model, in this case the 

Economic Order Quantity (EOQ) and Total Cost (TC). From the data given, we can 

analyze the effects of different parameters on EOQ (Q) and Total Cost (TC).  

 

Discussion of Results 
 The Discussion is based on the numerical example and the results are shown in the 

table. 

1. Demand Parameters (a, b, c, d): 

 As the coefficients a, b, c, d increase, both EOQ, Q and Total Cost, TC tend to 

increase. The higher demand is associated with an increase in order quantities 

and high inventory costs. 

 A negative value of demand coefficients indicates a reduction in the EOQ and 

TC, with decreases in demand implying less frequent ordering and lower 

inventory holding costs. 

2. Deterioration Parameters (γ, η): 

 The total cost increases as the shape parameter γ increases with the Weibull 

distribution. This shows that more inventory is wasted, and the holding costs 

rise as deterioration increases. 

 An increased scale parameter 𝜆, as it increases the rate of deterioration, also 

tends to increase total costs. It is because higher-order quantities are required 

in anticipation of faster deterioration. 

3. Other Parameters (p, q, C₁): 

 The changes of p and q impact the deterioration rate and the cost structure, 

showing a moderate change in both the EOQ and TC. 

 The C₁ parameter (presumably a fixed cost or initial cost) has a similar effect, 

where lowering it lowers both EOQ and TC, indicating that lower fixed or 

initial costs result in less required inventory and less waste. 

4. Overall Trends: 

 EOQ tends to increase as parameters affecting deterioration and demand (such 

as α, β, a, and d) increase. 

 As such, TC increases with increases in parameters that increase demand and 

deterioration rates, such as a, α, β, and C1. On the other hand, reducing those 

parameters decreases total cost, because the deterioration rate reduces, the 

number of orders declines, and the requirements on holding inventory 

decrease. 
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Review of EOQ Optimization in Inventory Control with the Edge Computing 

Technique 
Edge Computing is an approach to handling data and computing closer to the source, 
thereby minimizing Cloud Computing. Applying Edge Computing to the optimization of EOQ 
for declining products, where the demand function is nonlinear, could yield considerable 
benefits in delivering real-time data analysis, flexibility, and cost-effectiveness. 

 

Table, which highlights how a change in the parameter 

Calculating this using the edge computing approach mentioned above, the calculation 

is as follows: 

Current Parameters: a=25, T= 0.3291, TC=501.873, Q=312.4527 

To calculate the sensitivity of TC for change in a from 30 to 25 

                                                  𝑆𝑇𝐶 =
501.873−487.235

25−30
×

30

487.235
≈ −1.80 

This means that if there is a -1% in the mentioned measures, there would be a + 1% 

in the cumulative incidence percent that can be represented by the following formula 

Similarly, we can determine the sensitivity for Q by applying the same method 

𝑆Q =
312.4527 − 305.1729

25 − 30
×

30

305.1729
≈ −0.45 

Therefore, for every 1% decrease in a, the optimal order Quantity Q increases by 

approximately 0.45%. The rate of Deterioration of Local Temperature Data causes an 

increase to 30. The Edge device immediately recalculates the Economic Order 

quantity and the Total cost. If the system is sensitive enough to detect that the 

deterioration rate, which is represented by the Weibull factors, has risen, the edge 

computing device can instantly perform a sensitivity analysis of how the rate rise 

impacts the EOQ.Given the sensitivity of the EOQ model to changes in a, the edge 

computing system can recalculate: 

 New Total Cost (TC): At the edge device, the appropriate TC is then derived, 

taking into account the new deterioration rate. 

 New Order Quantity (Q): By recalculate the EOQ in real-time, the overall 

order quantity returns to the best value. 

 

Benefits of Edge Computing in EOQ Model Improvement: 

Reduced Latency: Edge computing means that decisions about what to do with the 

inventory are made on the spot, reducing time spent interacting with a main server for 

data. 

 Real-Time Adjustments: Local processing enables instantaneous adjustments 

to EOQ and Total Cost (TC) depending on the changes in demand or the other 

factors. 

 Minimized Costs: By constant supervision of inventory and subsequent 

instant adjustment of inventory levels, edge computing reduces overstocking 

and under stocking, in result minimize holding costs and ordering costs. 
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5. Conclusion & future work 
 

 This paper has demonstrated that the integration of Edge 

Computing to EOQ (Economic Order Quantity) model with nonlinear demand for 

deteriorating inventory items provides a strategic benefit in real-time data processing 

decision-making and cost. Finally, edge computing optimizes EOQ models for the 

increased flexibility, flexibility, and accuracy they can provide in echoing the 

market’s dynamic and environmental characteristics. This system does not only 

enhance the process of doing business by cutting down on many areas like 

overstocking, perishable foods, and potential customer sales thus makes the process 

more cost effective and environmentally friendly. As for the future work, it could be 

used of machine learning and block chain, and the use of multi–echelon supply chain 

networks, to handle uncertainty involve the use of robust optimization models. Such 

improvements will help establish more effective decision-making organizations 

where decisions made are real time and incur less wastage of resources, and of course 

help guarantee efficient business operations as the business world becomes more 

volatile. 

 

 

References 

 
[1] S. Bose, A. Goswami and K., S. Chaudhuri, An EOQ model for Deteriorating 

Items with Linear Time dependent Demand Rate and shortages Under Inflection and 

Time Discounting, J. Oper. Res. Soc., 46 (1995), 771-782. 

 

[2] R.M. Bhandari and P.K.S. Sharma, A Single Period Inventory Problem with 

Quadratic Demand Distribution Under the Influence of Market Policies, Eng. Science, 

12 (2000), 117-127.  

 

[3] S. K. Goyal and B. C. Giri, Recent Trends in Modeling of Deteriorating 

Inventory, European Journal of Operational Research, 134 (2001), 1-16.  

 

[4] C.T. Chang, An EOQ Model with Deteriorating Items Under Inflation When 

Supplier Credits Linked to Order Quantity, International Journal of Production 

Economics, 88 (2004), 307-316.  

 

[5] S. K. Ghosh and K. S. Chaudhuri, An Order Level Inventory Model for a 

Deteriorating Item with Weibull Deterioration Time-Quadratic Demand and 

Shortages, Advanced Modeling and Optimization, 6 (2004), 21-35.  

 

 



An edge computing approach to EOQ optimization for deteriorating items             247 

 

 

[6] C. Y. Dye, L. Y. Ouyang and T. P. Hsieh, Deterministic Inventory model for 

Deteriorating Items with Capacity Constraints and Time – Proportional Backlogging 

Rate, Eur J. Oper. Res., 178 (2007), 789-807.  

 

[7] A. A. Alamri, Z. T. Balkhi, The Effects of Learning and Forgetting on the 

Optimal Production Lot Size for Deteriorating Items with Time-Varying Demand and 

Deterioration Rates, Int. J. Prod. Econ., 10 (2007), 125-138.  

 

[8] Ajanta Roy, An Inventory Model for Deteriorating Items with Price Dependent 

Demand and Time- Varying Holding cost, Advanced Modeling and Optimization, 10 

(2008).  

 

[9] B. Biswaranjan-Mandal, An EOQ Inventory Model for Weibull Distributed 

Deteriorating Items Under Ramp Type Demand and Shortages, Opsearch, 47 (2010), 

158-16.  

 

[10] N. K. Sahoo, C. K. Sahoo and S. K. Sahoo, An Inventory Model for Constant 

Deteriorating Items with Price Dependent Demand and Time-Varying Holding Cost, 

International Journal of Computer Science &Communication, 1 (2010), 267-271. 

 

 [11] V. Mishra and L. Singh, Inventory Model for Ramp Type Demand, Time 

Dependent Deteriorating Items   with Salvage Value and Shortages, International 

Journal of Applied Mathematics & Statistics, 23 (2011), 84-91. 

 

[12] S. S. Mishra and P. K. Singh, A Computational Approach to EOQ Model with 

Power-Form Stock-Dependent Demand and Cubic Deterioration, American Journal 

of Operational Research, 1 (2011), 5-13. 

        

[13] C. Bai, H. Zhang, and X. Chen, Real-time inventory management based on edge 

computing, International Journal of Advanced Manufacturing Technology, 95 

(2018), 911-923. https://doi.org/10.1007/s00170-017-0189-3 

 

[14] Y. Chen, M. Zhang, Nonlinear demand and optimal inventory control, 

Computers & Industrial Engineering, 97 (2016), 155-165. 

https://doi.org/10.1016/j.cie.2016.04.010. 

 

[15] C.K. Sahoo, K.C. Paul, and S. Kumar, Two Warehouses EOQ Inventory Model 

of Degrading Matter Having Exponential   Decreasing Order, Limited Suspension in 

Price Including Salvage Value, SN COMPUT. SCI. 1, 334 (2020).  

https://doi.org/10.1007/s42979-020-00346-1 

        

 

https://doi.org/10.1007/s00170-017-0189-3
https://doi.org/10.1016/j.cie.2016.04.010
https://doi.org/10.1007/s42979-020-00346-1
https://doi.org/10.1007/s42979-020-00346-1


248         Dillip Ku. Baral, Kailash Ch. Paul, Chandan Ku. Sahoo, Dhiren Ku. Behera 

 

 

[16] C.K. Sahoo, K.C. Paul, and A. Kalam, An EOQ representation for declining 

matters with cubic order, inconsistent declination and inequitable backlogging, AIP 

Conference Proceedings 2253, 020010 (2020). https://doi.org/10.1063/5.0018991. 

 

[17] C. K. Sahoo and K.C. Paul, An EOQ model for cubic degrading substances 

promoted Keeping Weibull requisition and lacking scarcity, to appear. 

 

[18] K.C. Paul, C.K. Sahoo, and M.R. Sarangi, An Optimal Policy with Parabolic 

Demand carry forward with Three-Parameter Weibull Distribution Deterioration 

Rate, Scarcity, and Salvage Value, Springer, 2022.   

https://doi.org/10.1007/978-981-19-2277-0_3 

  

[19] C.K Sahoo, K.C. Paul, and S.S. Sahoo, An EOQ Form amid Cubic Demand 

Carry Forwarded with Three Parameter Weibull Distribution Deteriorating Item, 

Exclusive of Scarcity and Salvage Value, 2021. 

https://dx.doi.org/10.37622/IJAER/16.9.2021.765-771 

 

[20] C.K. Sahoo, K.C. Paul, EOQ model for cubic deteriorating items carry forward 

with Weibull demand and without shortages, IJREI (2021), 285-290.  

https://doi.org/10.36037/IJREI.2021.5510  

 

 

Received: June 9, 2025; Published: September 12, 2025 

https://doi.org/10.1063/5.0018991
https://doi.org/10.1007/978-981-19-2277-0_3
https://dx.doi.org/10.37622/IJAER/16.9.2021.765-771
https://doi.org/10.36037/IJREI.2021.5510

