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Abstract

In this paper, we explore the fuzzy linear programming problem us-
ing octagonal fuzzy numbers. We begin by presenting the fundamental
definition of octagonal fuzzy numbers and proceed to formulate an ex-
act multiplication operation based on the α-cut method. Building on
this foundation, we develop a solution approach for linear programming
problems involving octagonal fuzzy numbers by transforming the fuzzy
system into a series of crisp programming problems. To demonstrate the
effectiveness of the proposed method, we provide a detailed numerical
example and compare the results with those obtained using a classical
approach to highlight the efficiency and improved performance of the
new method.
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1 Introduction

Fuzzy numbers are a natural progression of the traditional crisp numbers that
are usually used to treat real life mathematical problems. Many new engineer-
ing and economical applications include some amount of uncertainty which
make it impractical to present them using crisp numbers. The fuzzy approach
introduced first by Zadeh [17] formed a suitable solution for the vagueness sur-
rounding such applications. Basically, A fuzzy number is the fuzzy subset of
a crisp number which describes natural physical problems in a more realistic
way. Nowadays, fuzzy mathematics forms powerful solutions for problems in
robotics, decision making and artificial intelligence fields [6, 11,12,19].

Fuzzy linear programming is an central topic of optimization where fuzzy
models are developed to treat problems that include uncertainty. Recently, a
rising amount of research work and effort is devoted to study programming
problems on both theoretical and computational levels [1, 2, 7, 8]. Authors in
this field considered different types of fuzzy linear programming problems and
proposed specific solutions for each type. For example in [13], the authors pro-
posed a solution for problems where all decision parameters are fuzzy numbers.
In [4], a new method for solving fuzzy linear programming problems in which
the elements of the coefficient matrix are represented by real numbers while
other parameters are represented using symmetric trapezoidal fuzzy numbers.
A method for solving fuzzy linear programming problems involving symmet-
ric octagonal fuzzy numbers is developed in [9]. Some researchers considered
problems where all parameters are represented by fuzzy numbers referred to
as fully fuzzy linear programming (FFLP). For example, in [14], a method
for solving FFLP is proposed to obtain the fuzzy optimal solution with un-
restricted variables and parameters. In [10], a method to find the optimal
solution of the same type for the linear programming problems is presented.

Most of the previous methods adopted either the α-cut or extension princi-
pal approach with approximate fuzzy operations for two fuzzy numbers when
building up their linear programming problems. However, the approximate
operations of two fuzzy numbers may not preserve the type of the sign of the
fuzzy number and in many cases lead to more fuzziness in the solution [5,15,16].
Moreover, many research work Oversees fuzzy numbers with more sophisti-
cated shapes - such as octagonal numbers – despite their indisputable role in
solving applied problems. This motivated us to introduce this work where a
fuzzy linear programming model is considered and dedicated for problems mod-
eled by octagonal fuzzy numbers. The fuzzy multiplication operation presented
in [20] is extended to accommodate octagonal fuzzy numbers. An algorithm to
solve the fuzzy linear programming model is proposed. A numerical example
is then presented to verify the ideas presented in this work. The numerical re-
sults is then compared to those presented in [9] to demonstrate the efficiency
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and performance of proposed method.
The reminder of this paper is organized as follows. In Section 2, we present

basic definition of octagonal fuzzy numbers then we move to and formulate
their basic operations. Section 3 introduce the linear programming problem
with octagonal fuzzy numbers along with the solution structure. To illustrate
the concepts discussed, we solve a numerical example in Section 4, where we
also compare the results with existing approaches. Finally, we provide our
conclusions in Section 5.

2 Octagonal Fuzzy Numbers

In this section, we present some basic definitions from fuzzy set theory for
fuzzy numbers [3]. We extend the generalized approach presented in [20] to
define the main operations for octagonal fuzzy numbers.

Let us first start be introducing the definition of the general fuzzy set [17]:

Definition 2.1. The fuzzy set Â is defined by Â = {(x, µÂ(x)) : x ∈ A and
µÂ(x) ∈ [0, 1]} where µÂ(x) is called the membership function.

In contrast to a classical set, where its elements have memberships of either
one (fully belong in the set) or zero (do not belong in the set), Fuzzy sets
are represented by their membership functions, which determine the degree of
membership of each element (e.g., each point in the universe of discourse) in the
fuzzy set. Following we define the octagonal fuzzy number using membership
function:

Definition 2.2. An octagonal fuzzy number denoted as Â = (a, b, α11, β11,
α12, β12, α13, β13; k, 1) where k ∈ (0.1) is a fuzzy number whose membership
function is given as:

µÂ(x) =



k
(α11−α12)

(x− a+ α11), a− α11 ≤ x ≤ a− α12

k, a− α12 ≤ x ≤ a− α13

1 + (1−k)
α13

(x− a), a− α13 ≤ x ≤ a

1, a ≤ x ≤ b

1− (1−k)
β13

(x− b), b ≤ x ≤ b+ β13

k, b+ β13 ≤ x ≤ b+ β12

k
β12−β11

(x− b− β11), b+ β12 ≤ x ≤ b+ β11

0, Otherwise

(1)

Figure 1 depicts the Octagonal fuzzy number defined by the membership
function µÂ(x) in Definition 2.2.
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Figure 1: Octagonal fuzzy number Ã = (α11 , α12, α13, a, b, β13 , β12, β11).

We now move on to defined the α−cut for the octagonal fuzzy numbers as a
first step to define the basic operations. We base our work in this paper on the
basic idea that we are defining operations such as addition and multiplication
without the approximation that is used normally in fuzzy sets. The goal is
to use operations that produces the exact results than just an approximate
operation [20].

Definition 2.3. Let Â = (a, b, α11, β11.α12, β12, α13, β13; k, 1) be an octagonal
fuzzy number, the α− cut of Â denoted by Aα is defined as:

1. If 0 ≤ α < k, then Aα = [a−α11 +
α
k
(α11 −α12), b+ β11 +

α
K
(β12 − β11)].

2. If α = k, then the outer interval is Aouter
α = [a − α12, b + β12] and the

inner interval is Ainner
α = [a− α13, b+ β13].

3. If k < α ≤ 1, then Aα = [a+ (α−1)
(1−k)

α13, b+
(α−1)
(1−k)

β13].

In order to define the basic operations, we find the sum of lower and upper
limits for fuzzy intervals presented in the α−cut Definition 2.3. So we introduce
the following definition:

Definition 2.4. Let Â = (a, b, α11, β11.α12, β12, α13, β13; k, 1) and B̂ = (c, d,
α21, β21.α22, β22, α23, β23; k, 1) be two octagonal fuzzy numbers and Aα +Bα =
[Lα, Uα], where Lα and Uα are the lower and upper limits of the sum of lower
and upper limits of the intervals Aα and Bα respectively. Regarding the cases
above, the sum is defined as follows:
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1. If 0 ≤ α < k, then

Lα = a− α11 +
α

k
(α11 − α12) + c− α21 +

α

k
(α21 − α22)

= a+ c− (α11 + α21) +
α

k
(α11 − α12 + α21 − α22)

Uα = b+ d+ (β11 + β21) +
α

k
(β12 − β11 + β22 − β21)

2. If α = k, then

Aouter
α +Bouter

α = [a+ c− (α12 + α22), b+ d+ (β12 + β22)]

Ainner
α +Binner

α = [a+ c− (α13 + α23), b+ d+ (β13 + β23)]

3. If k < α ≤ 1, then

Lα = a+ c+
(α− 1)

(1− k)
(α13 + α23)

Uα = b+ d+
(α− 1)

(1− k)
(β13 + β23)

Using Definition 2.4 and the operations presented in [20], we have the
following:

Definition 2.5. Let Â = (a, b, α11, β11.α12, β12, α13, β13; k, 1) and B̂ = (c, d,
α21, β21.α22, β22, α23, β23; k, 1) be two octagonal fuzzy numbers. The sum of Â
and B̂ denoted by Â⊕ B̂ is given by:

Â⊕B̂ = (a+c, b+d, α11+α21, β11+β21, α12+α22, β12+β22, α13+α23, β13+β23)
(2)

Definition 2.6. Let Â = (a, b, α11, β11.α12, β12, α13, β13; k, 1) and B̂ = (c, d,
α21, β21.α22, β22, α23, β23; k, 1) be two octagonal fuzzy numbers. We can deduce
the product of Â and B̂ denoted by Â⊗ B̂ as following:

Â⊗ B̂ = (ac, bd, aα21 + cα11 − α11α21, bβ21 + dβ11 + β11β21, aα22 + cα12 − α22,

bβ22 + dβ12 + β12β22, aα23 + cα13 − α13α23, bβ23 + dβ13 + β13β23; k, 1).

Definition 2.7. Let Â = (a, b, α11, β11.α12, β12, α13, β13; k, 1) and λ be any
real number, then

λÂ =

{
(λa, λb, λα11, λβ11.λα12, λβ12, λα13, λβ13; k, 1) λ ≥ 0

(λb, λa, |λ|β11, |λ|α11.|λ|β12, |λ|α12, |λ|β13, |λ|α13; k, 1) λ < 0.
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So, from Definitions 2.7 and 2.5 we can define the subtraction operation as
follows:

Definition 2.8. Let Â = (a, b, α11, β11.α12, β12, α13, β13; k, 1) and B̂ = (c, d,
α21, β21.α22, β22, α23, β23; k, 1) be two octagonal fuzzy numbers. The subtraction
of Â and B̂ denoted as Â⊖ B̂ is given as:

Â⊖ B̂ = (a− d, b− c, α11 + β21, β11 + α21, α12 + β22, β12 + α22, α13 + β23, β13 + α23) (3)

Remark 2.1. A real number n ∈ R can be expressed by the octagonal num-
ber definition as N̂ = (n, n, 0, 0, 0, 0, 0, 0; k, 1) so for two real numbers n,m
the basic operations can be applied directly as presented in Definitions 2.5, 2.6
and 2.8.

In the following section, we use the defined operations presented in this
section in order to build up a mathematical model of fuzzy linear programming
along with all sub linear systems with octagonal fuzzy numbers. ĉj, âj and q̂j

3 Fuzzy Linear Programming

We start by defining ĉj = (c1j, c2j, ..., c8j), âj = (a1j, ..., a8j), q̂j = (q1j, ..., q8j)
and x̂j = (x1j, ..., x8j) to be octagonal fuzzy numbers. The mathematical
model of fuzzy linear programming can be given as:

Min Ẑ =
n∑

j=1

ĉj ⊗ x̂j (4)

subject to the constraints

n∑
j=1

âj
(i) ⊗ x̂j ≥ q̂i, i = 1, 2, ..., n

x̂j ≥ 0̂, j = 1, 2, ..., n (5)

Now, Using Definitions 2.5 and 2.6, we can expand the fuzzy linear pro-
gramming problem so that we have:
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Min Ẑ =
n∑

j=1

ĉj ⊗ x̂j (6)

= (
n∑

j=1

c1jx1j,

n∑
j=1

c2jx2j,

n∑
j=1

(c1jx3j + c3jx1j − c3jx3j),
n∑

j=1

(c2jx4j + (7)

c4jx2j + c4jx4j),
n∑

j=1

(c1jx5j + c5jx1j − c5jx5j),
n∑

j=1

(c2jx6j + c6jx2j + c6jx6j),

n∑
j=1

(c1jx7j + c7jx1j − c7jx7j),
n∑

j=1

(c2jx8j + c8jx2j + c8jx8j))

where

n∑
j=1

âj
(i) ⊗ x̂j = (

n∑
j=1

a
(i)
1j x1j,

n∑
j=1

a
(i)
2j x2j,

n∑
j=1

(a
(i)
1j x3j + a

(i)
3j x1j − a

(i)
3j x3j), (8)

n∑
j=1

(a
(i)
2j x4j + a

(i)
4j x2j + a

(i)
4j x4j),

n∑
j=1

(a
(i)
1j x5j + a

(i)
5j x1j − a

(i)
5j x5j),

n∑
j=1

(a
(i)
2j x6j + a

(i)
6j x2j + a

(i)
6j x6j),

n∑
j=1

(a
(i)
1j x7j + a

(i)
7j x1j − a

(i)
7j x7j),

n∑
j=1

(a
(i)
2j x8j + a

(i)
8j x2j + a

(i)
8j x8j)). (9)

In order to obtain the optimal fuzzy solution for the problem, we transform
the fuzzy system into a system of crisp linear programming problems where
each is solved to get the optimal solution. The final optimal solution for
the fuzzy problem Ẑ and x̂j is then formed from the sub solutions for the
crisp problems. For the octagonal fuzzy number based linear programming
problem, The corresponding crisp linear models can be expressed in three
general systems as follows:

System I (basic problems):

minZr =
n∑

j=1

crjxrj,

s.t.
n∑

j=1

a
(i)
rj xrj ≥ qir, xrj ≥ 0, j = 1, . . . , n,

r = 1, 2. (10)
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System II (odd-derived problems):

minZr =
n∑

j=1

[
(c1j − crj)xrj + crjx1j

]
,

s.t.
n∑

j=1

[
(a

(i)
1j − a

(i)
rj )xrj + a

(i)
rj x1j

]
≥ qir,

xrj ≥ 0, j = 1, . . . , n, r = 3, 5, 7.

(11)

System III (even-derived problems):

minZr =
n∑

j=1

[
(c2j + crj)xrj + crjx2j

]
,

s.t.
n∑

j=1

[
(a

(i)
2j + a

(i)
rj )xrj + a

(i)
rj x2j

]
≥ qir,

xrj ≥ 0, j = 1, . . . , n, r = 4, 6, 8.

(12)

To solve the resulting crisp linear programming problems, one can use
any of the well known simplex methods. In this paper, we use the interior
point method [18] to produce the optimal solution for each crisp programming
problem. The final fuzzy optimal solution is composed of all the optimal
solutions of the crisp problems.

Theorem 3.1. The solution of problem 4 is the same as the solution of the
crisp linear programming problems described in Equations 10-12.

The fuzzy solution for the problem is said to be optimal if all the crisp prob-
lems have optimal solutions. The reader may turn to [9] for more theoretical
details on the feasibility of the fuzzy solution with octagonal fuzzy numbers
and the relation between the fuzzy and crisp programming problems. The
method reduces the fuzzy LP into eight crisp LPs, each solvable using classical
algorithms (e.g., simplex, interior-point), resulting in polynomial-time solv-
ability. The increase in complexity is linear with respect to the number of
fuzzy components. The algorithm we used can be summarized as following:
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Algorithm 1 Fuzzy Linear Programming with Octagonal Fuzzy Numbers

1: Input: Fuzzy parameters for objective and constraints
2: Output: Fuzzy optimal solution Ẑ and x̂j

3: Transform all fuzzy input parameters into their octagonal 8-tuple repre-
sentations.

4: Define fuzzy decision variables as x̂j = (x1j, x2j, . . . , x8j).
5: Formulate the corresponding crisp subproblems Z1–Z8 using the operations

defined in Definitions 5–8.
6: Solve each crisp subproblem individually using a linear programming solver

(e.g., interior-point method).
7: Aggregate the crisp solutions to construct fuzzy outcome vectors Ẑ and

x̂j.
8: Return the final fuzzy optimal solution in the octagonal fuzzy domain.

In the following section, we use the proposed algorithm to solve a numerical
example and compare the results to those presented in [9].

4 Numerical illustration

In this section, we implement the procedure and algorithm presented in Sec-
tion 3 using a numerical example. The example deals with a linear program-
ming problem with octagonal fuzzy numbers and constraints with crisp coeffi-
cients. The results is compared to those presented in [9].

If we have two types of food, the first contain 20 units of proteins per gram
and 40 unites of minerals per gram. The second type contains 30 units of
proteins and the same of minerals per gram. Knowing that the human body
requires 900 protein units and 1200 mineral units in minimum daily and these
amounts varies depending on the particular individual. Also, the cost of food
varies depending on the place of purchase. The goal is finding the approximate
amount of those two types of food should be consumed in order to have the
needed levels with minimum cost.

The problem is clearly better modeled by fuzzy numbers. Thus, it has been
chosen that this linear programming problem is modeled using symmetrical
fuzzy octagonal numbers with crisp coefficients for the constraints as they
represent the presence of proteins and minerals on those specific types of food.
The mathematical problem can be given as the following:
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Min Ẑ = ĉ1 ⊗ x̂1 + ĉ2 ⊗ x̂2,

subject to

20x̂1 + 30x̂2 ≥ q̂1

40x̂1 + 30x̂2 ≥ q̂2

x̂1 ≥ 0̂, x̂2 ≥ 0̂

Where ĉ1 = (5, 7, 3, 3, 2, 2, 1, 1) and ĉ2 = (7, 9, 4, 4, 3, 3, 2, 2) are the cost of the
two types of food. q̂1 = (890, 910, 5, 5, 4, 4, 2, 2) and q̂2 = (1195, 1205, 5, 5,
4, 4, 2, 2) are the expected minimum requirement of proteins and minerals for
humans.

The crisp linear programming problems which are equivalent to the fuzzy
linear programming are

Min Z1 = 5x11 + 7x12, subject to

20x11 + 30x12 ≥ 890

40x11 + 30x12 ≥ 1195

The optimal solution Z1 = 212.75 is occurred when x11 = 15.25 and x12 =
19.5

Min Z2 = 7x21 + 9x22, subject to

20x21 + 30x22 ≥ 910

40x21 + 30x22 ≥ 1205

Concerning this part we have to take in account that x21 ≥ x11 and x22 ≥ x12.
So, by solving this problem we get x21 = 15.25, x22 = 20.1667 and the optimal
solution is Z2 = 288.25.

For the remaining parts, we fix the values for x11, x12, x21 and x22 which
are calculated in the first two parts above.

Min Z3 = 3x11 + 4x12 + 2x31 + 3x32, subject to

20x31 + 30x32 ≥ 5

40x31 + 30x32 ≥ 5

The values of x11 = 15.25, x12 = 19.5, x31 = 0, x32 = 0.1667 and the optimal
solution Z3 = 124.25.
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Min Z4 = 3x21 + 4x22 + 10x41 + 13x42, subject to

20x41 + 30x42 ≥ 5

40x41 + 30x42 ≥ 5

The values of x41 = 15.25, x22 = 20.1667, x41 = 0, x42 = 0.1667 and the
optimal solution Z4 = 128.5835.

Min Z5 = 2x11 + 3x12 + 3x51 + 4x52, subject to

20x31 + 30x32 ≥ 4

40x31 + 30x32 ≥ 4

The values of x11 = 15.25, x12 = 19.5, x51 = 0, x52 = 0.1333 and the optimal
solution Z5 = 89.7433.

Min Z6 = 2x21 + 3x22 + 9x61 + 12x62, subject to

20x61 + 30x62 ≥ 4

40x61 + 30x62 ≥ 4

The values of x21 = 15.25, x22 = 20.1667, x61 = 0, x62 = 0.1333 and the
optimal solution Z6 = 92.6001.

Min Z7 = x11 + 2x12 + 4x71 + 5x72, subject to

20x31 + 30x32 ≥ 2

40x31 + 30x32 ≥ 2

The values of x11 = 15.25, x12 = 19.5, x71 = 0, x72 = 0.0667 and the optimal
solution Z7 = 54.7233.

Min Z8 = x21 + 2x22 + 8x81 + 11x82, subject to

20x41 + 30x42 ≥ 2

40x41 + 30x42 ≥ 2

The values of x21 = 15.25, x22 = 20.1667, x81 = 0, x82 = 0.0667 and the
optimal solution Z8 = 56.3167.

Therefore, the optimal solution Ẑ = (212.75, 288.25, 124.25, 128.5835,
89.7433, 92.6001, 54.7233, 56.3167) achieved at the octagonal fuzzy num-
bers x̂1 = (15.25,15.25, 0, 0, 0, 0, 0, 0) and x̂2 = (19.5, 20.1667, 0.1667, 0.1667,
0.1333, 0.1333, 0.0667, 0.0667).
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The results of the proposed method is compared to results presented by
[9] in Table 1.

Table 1: Comparison of the proposed method with method presented in [9]

Metric Proposed Method Method [9]

Fuzzy Objective Ẑ (center) [212.75, 288.25] [203.83, 296.17]
Central Interval Width 75.5 92.34
Maximum Interval Width 231.53 249.83
Solution Time (sec) ∼0.89 ∼0.92
x̂1 Central Value 15.25 15.00
x̂2 Central Value 19.83 20.00
Computational Strategy Exact Operations Approximate Multiplication

In [9], the method produced an optimal solution Ẑ = (203.833 , 296.1667,
138.583, 138.584, 100.397, 100.4, 60.61, 60.61) with x̂1 = (14.25, 15.75, 0.5, 0.5,
0.4, 0.4, 0.2, 0.2) and x̂2 = (19.1667, 20.833, 0.4997, 0.497, 0.4, 0.4, 0.2, 0.2). Look-
ing at the results, the method proposed int this paper have smaller uncertainty
intervals. For example, the central interval in our approach is (212.75, 288.25)
compared to (203.833, 296.1667).

5 Conclusions

We consider the fuzzy linear programming problem in context of octagonal
fuzzy numbers. We have used the multiplication operation for fuzzy numbers
without any approximation or any added special conditions to eliminate some
terms in the multiplication operation itself. We proposed a new algorithm
for the solving the fuzzy linear programming problem where the fuzzy system
is converted into a number of crisp problems. The fuzzy optimal solution is
then obtained by collecting the crisp solutions solved using classical simplex
methods. We apply the proposed method using a numerical example and com-
pare our results with a classical method presented int the field. The numerical
results reflect the efficiency and performance of the new approach.
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