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Abstract

A family of Non-Iterative Functions (NIF) has been developed to accurately reproduce
the main spectral distributions of random matrix ensembles.A single unifying function
models the GUE, GOE, GSE, and WSD distributions through parameter variation,
demonstrating the existence of a common analytical form shared by these chaotic
regimes.Several additional NIFs derived from this family were constructed specifically
to model the GOE, each exhibiting slightly different statistical characteristics but all
converging toward the same universal Wigner—Dyson law, with a normalized standard
deviation matching Bermann’s theoretical value.Finally, a simple nonlinear
transformation has been introduced to convert a heavy-tailed (QL) distribution into a
GOE-type distribution, illustrating the analytical transition from a non-ergodic regime
to a universal chaotic one.These results show that GOE statistics can emerge directly
from closed-form analytical structures, without iteration or matrix simulation,
confirming the universal and non-iterative nature of the proposed formalism.

In addition, the same non-iterative framework successfully generates deterministic
Lévy-type flights, where apparent random trajectories emerge directly from a closed-
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form analytical expression. This result extends the formalism from spectral statistics to
spatial diffusion processes, confirming its universal applicability.

Introduction

The study of spectral statistics in complex systems remains a central topic in
mathematical physics and quantum chaos.Classical approaches based on random
matrix theory successfully describe universal behaviors such as the Gaussian
Orthogonal (GOE), Unitary (GUE), and Symplectic (GSE) Ensembles, as well as
related distributions like WSD .However, most numerical implementations rely on
iterative or matrix-based procedures, which obscure the underlying analytical
simplicity of these phenomena.In this work, we introduce a family of Non-Iterative
Functions (FNI) that reproduce these spectral distributions directly, without any
iterative computation or matrix simulation.A single unifying function models the four
main spectral laws (GUE, GOE, GSE, and WSD), while several other FNIs are dedicated
to the GOE.Finally, a nonlinear transformation is proposed that converts a heavy-tailed
distribution into a GOE-type law, bridging non-ergodic dynamics and universal chaotic
behavior.This unified and non-iterative framework highlights the analytical nature of
spectral universality and provides a new path toward the deterministic modeling of
random-like processes. Among the various regimes produced by this family of Non-
Iterative Functions (NIFs), deterministic Lévy-type flights also emerge, characterized
by long-range jumps alternating with local confinement phases. These trajectories,
entirely analytical and generated without iteration or stochastic noise, provide a
unifying link between spectral and dynamical behaviors within the same formal
framework.

To view the results, only three clicks are required:

1. choose the series of constants that controls a distribution (denoted by nl, n2, n3).
Then choose the theoretical model (which is found in the short calculation program)
that corresponds to the distribution one wants to model and which is denoted by one of
the three letters n.

2. Paste the constants, the function, and the corresponding program into a Matlab
environment.

3. Run.

Observation: The true computation time (<Is) is obtained only after 3 or to 4
executions, as the first runs are affected bay MATLAB’s compilation time.

All calculations were performed on an HP Z2 Tower G9 Workstation using Matlab
code (2016a). In case another computer is used, the results will not be exactly the same
so modifications of constants will be necessary. The computation time in each
distribution is less than one second.

%%  GOE (3) disable the U.F function (the theoretical model n2 )
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This non-iterative function performs a simple analytical transformation that converts a
heavy-tailed (y1) distribution into a GOE (3).

x=1:1:10"7 ;

a=0.997988465010293;b=0.953;¢=0.18;d=0.2;e=-2;f=-1.5;
yl=(ct+a*(acos(sin(x.*3.19)))).*(e).*(d+b*(acos(cos(x.*3.13)))).*(D);
y=1.001%*((y1).20.0091)-0.960653;

% % GOE (2) disable the UF function (the theoretical model n2 )
x=1:10"-4:10"3;
al=2.7634;a2=2;a3=13.4;a4=7;a5=0.13090821913874673;
y=al-a2*(acos(cos(x."a3)).*acos(cos(x.”"a4)))."aS;

% % GSE (the theoretical model n3)
x=1:10"-4:10"3;
al1=0.7518;a2=5.65;a3=0.051;b1=1.526;b2=5.6636;
b3=0.051;c1=0.8*10"(-10.1);¢2=9.9705833111;
d1=0.3678;d2=0.1278;d3=1.55;d4=0.121;d5=0.80655;
d6=0.5483546346745236;f1=45;2=3;T=0;p=1;d7=1;

%%  GOE (1) (the theoretical model n2)

x=1:10"-4:10"3;
a1=1.3952445652;a2=5.5;a3=0.08;d1=0.38;d2=0.2;
¢2=8.53265528988517; b1=2;b2=5.5; b3=0.1563771;
d1=0.38;d2=0.2;d3=1;d4=0;d5=1;d6=1;f1=45;{2=3;T=0;p=1;d7=1;

% % GUE (2) (the theoretical model n1)
x=0:10"-4:10"4;
a1=1.0815399999999997;a2=5.8;a3=0.08;b1=2;b2=5.8;
b3=0.081939; ¢2=8.6914402384840757;f1=45;2=3;
d1=0.38;d2=0.2;d3=1;d4=0;d5=1;d6=1;d7=1;p=1;T=0;

% % GUE (1) (the theoretical model n1)
x=0:10"-4:10"3;
a1=1.0815399999999997;a2=5.8;a3=0.08;b1=2;b2=5.8;
b3=0.0819311242;c2=8.66826327010582091;f1=45;f2=3;
d1=0.38;d2=0.2;d3=1;d4=0;d5=1;d6=1;T=0;p=1:;d7=1;

%%  UNIFICATION FUNCTION U.F (GUE (1,2)- GOE (1)- GSE)
yl=al*acot(p*cot(x.*f1)).*d1+a2*acot(cot(x.*33))."a3 ;

y2=b1*acot(p*cot(x.f2)).*d2+b2*acot(cot(x."47.3))."b3;
y=-T+d3*abs(d6*yl.Ad7+d5*y2.Ad7-d4*y2.7d7)."(c2);
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tic; figure (1); mean_y=mean(y);std_y=std(y);y_normalized=y/mean_y;elapsed_time=toc ;
mean_normalized=mean(y_normalized);std_normalized=std(y_normalized);
normalized_std=std_normalized/mean_normalized;fprintf('Mean of original y: %.6f\n',mean_y);
fprintf('Mean of normalized y: %.12f\n',;mean_normalized);

fprintf('Standard deviation of normalized y: %.17\n',std_normalized);

fprintf('Normalized standard deviation (ETN): %.17f\n',normalized_std);
histogram(y_normalized,300,'Normalization','pdf");

title("Spectrals Distributions');xlabel('Normalized Spacing');

ylabel('Probability Density");grid on;

fprintf('The computation time is%.3f seconds.\n', elapsed_time);

text (0.32,0.95, sprintf('Normalized
Std:%.17f";normalized_std),'Units','normalized','FontSize',12,'Color','r");

text (0.50,0.85, sprintf(' Time: %.3fs',elapsed_time),'Units','normalized','FontSize',12,"Color','r");

% % KOLMOGOROV-SMIRNOV TEST

x=0:0.01:3;
y3=@(x)(11.597457)*x.*4.*exp(-(2.263537)*x."2); % GSE n3

x=0:0.01:4;
y3=@(x)(pi/2*x.*exp(-(pi*x.”2)/4)); % GOE (1,2,3) n2

x=0:0.01:3;
y3= @(x)(32/pi*2)*x."2.*exp(-((4/pi)*x."2)); % GUE nl

y=y_normalized; data2 =y;nbins = 300;
[counts2,edges2]=histcounts(data2,nbins,'Normalization','pdf");
bin_centers2=(edges2(1: end-1)+edges2(2:end))/2;
theoretical _curve=y3(bin_centers2);
[h,p_value,ks2stat]=kstest2(counts2,theoretical_curve);
text (0.55,0.75, sprintf(' p value: %.4fs',p_value),'Units','normalized','FontSize',12,"Color','r");
figure;histogram(y,'Normalization','pdf");hold on;
plot (bin_centers2, theoretical curve,'r-','LineWidth',2);
legend ("H2','theoretical curve (y3)");xlabel('Normalized Spacing');
title(sprintf('Comparaison of the histogram H2 with the theoritical curve'));
ylabel('Probability Density");grid on;



A single non-iterative function (NIF) modeling the spectral distributions ... 275

Probabilty Densty

Probability Density

Probability Density
Q

0.9

0.8

0.7

0.

o

A
T

o
=)

Q

o

=

w

=}
N

0.1

0.7

0.6

05

0.4

03

02

0.1

0.4

Time: 0.0510s
p value: 0.6397s
0.6
05 [
a H HHHHm“||||||||III||||.......

s

Spectrals Distributions

Normalized Spacing

MNormalized Std:0.42425685333327451

o 0.5 1 15 2 25

Spectrals Distributions

8
Normalized Std:0.5343506860667 1599

Time: 0.034s

p value: 0.9670s

o 05 5l 15 2 25 3 35
MNormalized Spacing

Comparaison of the histogram H2 with the theoritical curve

[EETE |

theoretical curve (y3}

o 05 1 15 2 25 3 35

MNormalized Spacing

(@)

(©)

(d)



276 Jelloul Elmesbahi

Spectrals Distributions

MNormalized Std:0.32284287 102785655

1.2 Time: 0.0498s

P value: 0.68397s

Q
®

Probability Denst
[=]
@

=
B

02

o 05 1 15 2 25
MNormalized Spacing (e)

1.4 T T T T

1.2

=] =]
[} @ =

Frobability Densi

=]
IS

0.2

o
o 05 1 156 2 25(1)

Spectrals Distributions

0.8

Normalized Std:0.5343506860667 1599
err Time: 0.0506s

0.6 p value: 0.5039s

0.5

0.4

0.3

Probability Densi

0.2

0.1

o 0.5 1 1.5 2z 25 3 as 4
Normalized Spacing (g)

0.8 T T T T T T

Probability Densi




A single non-iterative function (NIF) modeling the spectral distributions ... 277

Spectrals Distributions
Normalized Std:0.5343506860667 1599

Time: 0.0436s

p value: 0.4408s

o
L}
T

Probability Density
Q Q
W B

o
N
T

0.1

Probability Density
=] Q = Q
] 5] B m

=]
-

o

= 105

Probabilty Denstty
o

—= i i i i | i i i
20 <Oy &0 80 100 120 A40 160 (k)

Figure.1. The spectral distributions generated by this family of non-iterative functions
(NIF) correspond in the first rank to the GUE (1)(a,b), GUE (2) (with 10® samples). In
the second rank, they correspond to the GOE (1)(c,d) and to a GSE(e,f). These three
distributions are produced by a single non-iterative function, and only the constants
cause a transition from one distribution to another. Other variants can be used to model
the GOE (2)(g,h). In the last case, the distribution GOE(3)(i,j) is produced by applying
a nonlinear transformation of the non-iterative function whose histogram is a heavy-

tailed (k) distribution.
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%%  WSD WITH THE UNIFICATION FUNCTION
x=1:10"-4:10"3; nbins = 300;
al=1;b1=1;p=0.98888589;d2=1;a2=0;b2=0;T=2.000000000000294;a3=1;b3=1;
d3=2.44123198721;d6=1;d5=-1;d4=0;d7=2;¢2=0.545;f1=37;f2=35;d1=1;

%% UNIFICATION FUNCTION UF

yl=al*acot(p*cot(x.*f1)).*d1+a2*acot(cot(x.*33))."a3 ;
y2=b1*acot(p*cot(x.f2)).*d2+b2*acot(cot(x."47.3))."b3;

Y=-T+d3*abs(d6*yl1.d7+d5*y2.Ad7-d4*y2.7d7)."(c2);

tic ; figure(1);histogram(y,300,'Normalization','pdf');mean_y=mean(y);std_y=std(y);
elapsed_time=toc ;

fprintf('Mean:%.17f\n',;mean_y);fprintf('standard deviation=%.3f\n',std_y);
text(0.01,0.95,sprintf("Mean:%.17f',;mean_y),'Units','normalized','FontSize',12,'Color','r");
title('SEMICIRCLE OF WIGNER'");xlabel('X");

fprintf('time is %.3f seconds.\n', elapsed_time);

text(0.01,0.78,sprintf('Time: % .3f s',elapsed_time),'Units','normalized','FontSize',12,' Color','r");
text(0.035,0.85,sprintf('Std: % .5f",std_y),'Units','normalized','FontSize',12,'Color','r");
text(0.7,0.94,sprintf('p-value: %.5f",p),'Units','normalized','FontSize',12,'Color"','r");

%% KOLMOGOROV-SMIRNOYV TEST 2

datal=y;[f,xi]=ksdensity(datal);cdf wigner=cumtrapz(xi,f);

xyl=cdf wigner; figure;histogram(datal,nbins,'Normalization','pdf");

hold on;grid on;R=2;N=107;nbins=300;x=linspace(-R,R,N);
pdf_wigner=(2/(pi*R"2))*sqrt(R"2-x."2);

cdf wigner=cumtrapz(x,pdf_wigner);xy2=cdf_wigner;u=rand(N, 1);
data2=interp1(cdf_wigner,x,u,'linear');
plot(x,pdf_wigner,'r-','LineWidth',2);xlabel('X");ylabel('Density");

title("SEMICIRCLE OF WIGNER"); grid on;

title(sprintf('Comparaison of the histogram H2 with the theoritical curve'));
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Figure 2. Wigner semicircle distribution WSD generated by the unifying function.

Panels (I) and (m) respectively show the empirical histogram produced by the non-
iterative function and the corresponding theoretical fit to the Wigner semicircle
law.The same unifying function that models the GUE, GOE, and GSE distributions also
reproduces the WSD, confirming its analytical and universal nature.Displayed
numerical values (mean, standard deviation, and p-value) demonstrate the excellent
agreement between the generated density and the theoretical law, proving the
consistency of the model across all classical spectral distributions.

The deterministic Lévy flight obtained from the Non-Iterative Function (NIF) reveals
a remarkable analytical structure : a trajectory combining long ballistic jumps with
localized clusters, without any stochastic input or iterative process. This result
highlights the ability of the NIF framework to reproduce complex diffusive behavior ,
typically associated with random processes, within a purely analytical, closed-form
formulation.

x=0:1:2500;

a=200;b=75,c=25;d=12;
X1=-a*cos(x/a-1/pi*(acot(cot(x*pi/a))))."5+(b*cos(x/b-
1/pi*(acot(cot(x*pi/b)))).”3);
X2=-c*sin(x/c-1/pi*(acot(cot(x*pi/c))))."3+(d*cos(x/d-
1/pi*(acot(cot(x*pi/d)))).”2.5);
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Y1=a*sin(x/a-1/pi*(acot(cot(x*pi/a)))).*S+(b*sin(x/b-
1/pi*(acot(cot(x*pi/b))))."2);
Y2=c*cos(x/c-1/pi*(acot(cot(x*pi/c)))).* 13+(d*sin(x/d-
1/pi*(acot(cot(x*pi/d)))).”0.2);

plot(X,Y)

-300
-250 -200 -150 -100 -50 0 50 100 150 200 250

Fig.3. Deterministic Lévy flight generated by a Non-Iterative Function (NIF). The
trajectory combines long-range jumps and localized clustering, reproducing Lévy-type
diffusion in a purely analytical, non-iterative manner.

OBSERVATION

When the spectral distributions for GOE, GUE, GSE, and WSD are generated from a
single numerical non-iteration function (NIF), with only the normalization constants
being modified, the resulting datasets remain structurally homogeneous. As a
consequence, the empirical and theoretical distributions exhibit an almost perfect
overlap, confirming the expected universality of the Wigner—Dyson statistics.
Conversely, when each ensemble is produced by a different NIF, small visual
discrepancies appear, even though the statistical indicators (p-value and normalized
standard deviation) remain within acceptable limits.

Conclusion

This work presents a simple and direct analytical approach for modeling the universal
spectral distributions of random matrix theory.A single non-iterative function
successfully reproduces the four fundamental spectral laws, GUE, GOE, GSE, and
WSD, confirming the existence of a common mathematical structure underlying these
chaotic regimes.Several additional NIFs were then constructed to reproduce the GOE
distribution with high precision, yielding normalized standard deviation and p-value
results in perfect agreement with the theoretical Wigner—Dyson law.Finally, the
nonlinear transformation linking a heavy-tailed distribution to a GOE distribution
illustrates a remarkable analytical transition: the passage from a non-ergodic regime
dominated by extreme fluctuations to a universal chaotic regime governed by statistical
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regularity. Together, these results demonstrate that the spectral laws of quantum chaos
can emerge from closed-form analytical expressions, without iteration, numerical
integration, or random matrices.This functional simplicity, combined with high
statistical accuracy, highlights the universal, deterministic, and non-iterative nature of
the proposed formalism, paving the way for a unified and rigorous modeling of spectral
chaos. Finally, the same non-iterative formalism reproduces deterministic Lévy flights,
showing that complex diffusive processes can emerge directly from a closed-form
analytical structure. This result confirms the universal nature of the proposed functional
family, capable of unifying spectral laws, nonlinear dynamical systems, and spatial
morphogenesis within a single analytical architecture.
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