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Abstract 

 
A family of Non-Iterative Functions (NIF) has been developed to accurately reproduce 

the main spectral distributions of random matrix ensembles.A single unifying function 

models the GUE, GOE, GSE, and WSD distributions through parameter variation, 

demonstrating the existence of a common analytical form shared by these chaotic 

regimes.Several additional NIFs derived from this family were constructed specifically 

to model the GOE, each exhibiting slightly different statistical characteristics but all 

converging toward the same universal Wigner–Dyson law, with a normalized standard 

deviation matching Bermann’s theoretical value.Finally, a simple nonlinear 

transformation has been introduced to convert a heavy-tailed (QL) distribution into a 

GOE-type distribution, illustrating the analytical transition from a non-ergodic regime 

to a universal chaotic one.These results show that GOE statistics can emerge directly 

from closed-form analytical structures, without iteration or matrix simulation, 

confirming the universal and non-iterative nature of the proposed formalism.  

In addition, the same non-iterative framework successfully generates deterministic 

Lévy-type flights, where apparent random trajectories emerge directly from a closed- 
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form analytical expression. This result extends the formalism from spectral statistics to 

spatial diffusion processes, confirming its universal applicability.   

 

Introduction 

 

The study of spectral statistics in complex systems remains a central topic in 

mathematical physics and quantum chaos.Classical approaches based on random 

matrix theory successfully describe universal behaviors such as the Gaussian 

Orthogonal (GOE), Unitary (GUE), and Symplectic (GSE) Ensembles, as well as 

related distributions like WSD .However, most numerical implementations rely on 

iterative or matrix-based procedures, which obscure the underlying analytical 

simplicity of these phenomena.In this work, we introduce a family of Non-Iterative 

Functions (FNI) that reproduce these spectral distributions directly, without any 

iterative computation or matrix simulation.A single unifying function models the four 

main spectral laws (GUE, GOE, GSE, and WSD), while several other FNIs are dedicated 

to the GOE.Finally, a nonlinear transformation is proposed that converts a heavy-tailed 

distribution into a GOE-type law, bridging non-ergodic dynamics and universal chaotic 

behavior.This unified and non-iterative framework highlights the analytical nature of 

spectral universality and provides a new path toward the deterministic modeling of 

random-like processes. Among the various regimes produced by this family of Non-

Iterative Functions (NIFs), deterministic Lévy-type flights also emerge, characterized 

by long-range jumps alternating with local confinement phases. These trajectories, 

entirely analytical and generated without iteration or stochastic noise, provide a 

unifying link between spectral and dynamical behaviors within the same formal 

framework.  

To view the results, only three clicks are required: 

1. choose the series of constants that controls a distribution (denoted by n1, n2, n3). 

Then choose the theoretical model (which is found in the short calculation program) 

that corresponds to the distribution one wants to model and which is denoted by one of 

the three letters n. 

2. Paste the constants, the function, and the corresponding program into a Matlab 

environment. 

3. Run. 

Observation: The true computation time (<1s) is obtained only after 3 or to 4 

executions, as the first runs are affected bay MATLAB’s compilation time. 

All calculations were performed on an HP Z2 Tower G9 Workstation using Matlab 

code (2016a). In case another computer is used, the results will not be exactly the same 

so modifications of constants will be necessary. The computation time in each 

distribution is less than one second. 

%%     GOE (3)       disable the U.F function   (the theoretical model n2 ) 
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This non-iterative function performs a simple analytical transformation that converts a 

heavy-tailed (y1) distribution into a GOE (3). 
x=1 :1 :10^7 ; 

a=0.997988465010293;b=0.953;c=0.18;d=0.2;e=-2;f=-1.5; 

y1=(c+a*(acos(sin(x.^3.19)))).^(e).*(d+b*(acos(cos(x.^3.13)))).^(f); 

y=1.001*((y1).^0.0091)-0.960653;   

 

% %    GOE (2)      disable the UF function    (the theoretical model n2 ) 

x=1:10^-4:10^3; 

a1=2.7634;a2=2;a3=13.4;a4=7;a5=0.13090821913874673; 

y=a1-a2*(acos(cos(x.^a3)).*acos(cos(x.^a4))).^a5;  

 

% %       GSE    (the theoretical model n3 ) 

x=1:10^-4:10^3;                                                          

a1=0.7518;a2=5.65;a3=0.051;b1=1.526;b2=5.6636;                                       

b3=0.051;c1=0.8*10^(-10.1);c2=9.9705833111;  

d1=0.3678;d2=0.1278;d3=1.55;d4=0.121;d5=0.80655; 

d6=0.5483546346745236;f1=45;f2=3;T=0;p=1;d7=1; 

 

%%      GOE (1)     (the theoretical model n2 )  

x=1:10^-4:10^3;                                                                 

a1=1.3952445652;a2=5.5;a3=0.08;d1=0.38;d2=0.2;                                     

c2=8.53265528988517; b1=2;b2=5.5; b3=0.1563771;  

d1=0.38;d2=0.2;d3=1;d4=0;d5=1;d6=1;f1=45;f2=3;T=0;p=1;d7=1; 

 

% %        GUE (2)     (the theoretical model n1 ) 

x=0:10^-4:10^4;                                                                 

a1=1.0815399999999997;a2=5.8;a3=0.08;b1=2;b2=5.8; 

b3=0.081939; c2=8.6914402384840757;f1=45;f2=3;      

d1=0.38;d2=0.2;d3=1;d4=0;d5=1;d6=1;d7=1;p=1;T=0; 

 

% %        GUE (1)     (the theoretical model n1 ) 

x=0:10^-4:10^3;                                                              

a1=1.0815399999999997;a2=5.8;a3=0.08;b1=2;b2=5.8; 

b3=0.0819311242;c2=8.66826327010582091;f1=45;f2=3;              

d1=0.38;d2=0.2;d3=1;d4=0;d5=1;d6=1;T=0;p=1;d7=1; 

 

%%     UNIFICATION FUNCTION    U.F         (GUE (1,2)- GOE (1)- GSE) 

  

y1=a1*acot(p*cot(x.^f1)).^d1+a2*acot(cot(x.^33)).^a3 ;                   

y2=b1*acot(p*cot(x.^f2)).^d2+b2*acot(cot(x.^47.3)).^b3;               

y=-T+d3*abs(d6*y1.^d7+d5*y2.^d7-d4*y2.^d7).^(c2); 
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tic; figure (1); mean_y=mean(y);std_y=std(y);y_normalized=y/mean_y;elapsed_time=toc ; 

mean_normalized=mean(y_normalized);std_normalized=std(y_normalized);  

normalized_std=std_normalized/mean_normalized;fprintf('Mean of original y: %.6f\n',mean_y); 

fprintf('Mean of normalized y: %.12f\n',mean_normalized);  

fprintf('Standard deviation of normalized y: %.17\n',std_normalized); 

fprintf('Normalized standard deviation (ETN): %.17f\n',normalized_std); 

histogram(y_normalized,300,'Normalization','pdf');  

title('Spectrals Distributions');xlabel('Normalized Spacing'); 

ylabel('Probability Density');grid on;  

fprintf('The computation time is%.3f seconds.\n', elapsed_time); 

text (0.32,0.95, sprintf('Normalized 

Std:%.17f',normalized_std),'Units','normalized','FontSize',12,'Color','r'); 

text (0.50,0.85, sprintf(' Time: %.3fs',elapsed_time),'Units','normalized','FontSize',12,'Color','r'); 

 

 

 

%%                       KOLMOGOROV-SMIRNOV TEST   

 

x=0:0.01:3;  

y3=@(x)(11.597457)*x.^4.*exp(-(2.263537)*x.^2);        % GSE                 n3 

  

x=0:0.01:4;  

y3=@(x)(pi/2*x.*exp(-(pi*x.^2)/4));                                % GOE (1,2,3)     n2 

  

x=0:0.01:3;    

y3= @(x)(32/pi^2)*x.^2.*exp(-((4/pi)*x.^2));                % GUE                 n1 
  

y= y_normalized; data2 =y;nbins = 300; 

    [counts2,edges2]=histcounts(data2,nbins,'Normalization','pdf');  

    bin_centers2=(edges2(1: end-1)+edges2(2:end))/2;  

    theoretical_curve=y3(bin_centers2);  

    [h,p_value,ks2stat]=kstest2(counts2,theoretical_curve); 

    text (0.55,0.75, sprintf(' p value: %.4fs',p_value),'Units','normalized','FontSize',12,'Color','r'); 

    figure;histogram(y,'Normalization','pdf');hold on; 

    plot (bin_centers2, theoretical_curve,'r-','LineWidth',2); 

    legend ('H2','theoretical curve (y3)');xlabel('Normalized Spacing');  

    title(sprintf('Comparaison of the histogram H2 with the theoritical curve' )); 

    ylabel('Probability Density');grid on; 
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Figure.1. The spectral distributions generated by this family of non-iterative functions 

(NIF) correspond in the first rank to the GUE (1)(a,b), GUE (2) (with 108 samples). In 

the second rank, they correspond to the GOE (1)(c,d) and to a GSE(e,f). These three 

distributions are produced by a single non-iterative function, and only the constants 

cause a transition from one distribution to another. Other variants can be used to model 

the GOE (2)(g,h). In the last case, the distribution GOE(3)(i,j) is produced by applying 

a nonlinear transformation of the non-iterative function whose histogram is a heavy-

tailed (k) distribution. 
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%%      WSD   WITH   THE   UNIFICATION   FUNCTION         

x=1:10^-4:10^3;                     nbins = 300; 

a1=1;b1=1;p=0.98888589;d2=1;a2=0;b2=0;T=2.000000000000294;a3=1;b3=1; 

d3=2.44123198721;d6=1;d5=-1;d4=0;d7=2;c2=0.545;f1=37;f2=35;d1=1; 

  

%%   UNIFICATION FUNCTION     UF   

                                                         

y1=a1*acot(p*cot(x.^f1)).^d1+a2*acot(cot(x.^33)).^a3 ;  

y2=b1*acot(p*cot(x.^f2)).^d2+b2*acot(cot(x.^47.3)).^b3;               

y=-T+d3*abs(d6*y1.^d7+d5*y2.^d7-d4*y2.^d7).^(c2); 

 
tic ; figure(1);histogram(y,300,'Normalization','pdf');mean_y=mean(y);std_y=std(y); 

elapsed_time=toc ; 

fprintf('Mean:%.17f\n',mean_y);fprintf('standard deviation=%.3f\n',std_y); 

text(0.01,0.95,sprintf('Mean:%.17f',mean_y),'Units','normalized','FontSize',12,'Color','r');  

title('SEMICIRCLE OF WIGNER');xlabel('X'); 

fprintf('time is %.3f seconds.\n', elapsed_time); 

text(0.01,0.78,sprintf('Time:% .3f s',elapsed_time),'Units','normalized','FontSize',12,'Color','r');  

text(0.035,0.85,sprintf('Std:% .5f',std_y),'Units','normalized','FontSize',12,'Color','r'); 

 text(0.7,0.94,sprintf('p-value: %.5f',p),'Units','normalized','FontSize',12,'Color','r'); 

 

 %%   KOLMOGOROV-SMIRNOV TEST 2 

 

data1=y;[f,xi]=ksdensity(data1);cdf_wigner=cumtrapz(xi,f);  

xy1=cdf_wigner; figure;histogram(data1,nbins,'Normalization','pdf');  

hold on;grid on;R=2;N=10^7;nbins=300;x=linspace(-R,R,N); 

pdf_wigner=(2/(pi*R^2))*sqrt(R^2-x.^2);  

cdf_wigner=cumtrapz(x,pdf_wigner);xy2=cdf_wigner;u=rand(N, 1);  

data2=interp1(cdf_wigner,x,u,'linear');  

plot(x,pdf_wigner,'r-','LineWidth',2);xlabel('X');ylabel('Density');  

title('SEMICIRCLE OF WIGNER'); grid on;  

title(sprintf('Comparaison of the histogram H2 with the theoritical curve' )); 
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(l)      

 (m) 
 

Figure 2. Wigner semicircle distribution WSD generated by the unifying function. 

 

Panels (l) and (m) respectively show the empirical histogram produced by the non-

iterative function and the corresponding theoretical fit to the Wigner semicircle 

law.The same unifying function that models the GUE, GOE, and GSE distributions also 

reproduces the WSD, confirming its analytical and universal nature.Displayed 

numerical values (mean, standard deviation, and p-value) demonstrate the excellent 

agreement between the generated density and the theoretical law, proving the 

consistency of the model across all classical spectral distributions. 

The deterministic Lévy flight obtained from the Non-Iterative Function (NIF) reveals 

a remarkable analytical structure : a trajectory combining long ballistic jumps with 

localized clusters, without any stochastic input or iterative process. This result 

highlights the ability of the NIF framework to reproduce complex diffusive behavior , 

typically associated with random processes, within a purely analytical, closed-form 

formulation.  

 

x=0:1:2500; 

a=200;b=75,c=25;d=12; 

X1=-a*cos(x/a-1/pi*(acot(cot(x*pi/a)))).^5+(b*cos(x/b-

1/pi*(acot(cot(x*pi/b)))).^3); 

X2=-c*sin(x/c-1/pi*(acot(cot(x*pi/c)))).^3+(d*cos(x/d-

1/pi*(acot(cot(x*pi/d)))).^2.5); 
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Y1=a*sin(x/a-1/pi*(acot(cot(x*pi/a)))).^5+(b*sin(x/b-

1/pi*(acot(cot(x*pi/b)))).^2); 

Y2=c*cos(x/c-1/pi*(acot(cot(x*pi/c)))).^13+(d*sin(x/d-

1/pi*(acot(cot(x*pi/d)))).^0.2); 

plot(X,Y) 

 

   
 

Fig.3. Deterministic Lévy flight generated by a Non-Iterative Function (NIF). The 

trajectory combines long-range jumps and localized clustering, reproducing Lévy-type 

diffusion in a purely analytical, non-iterative manner. 

 

OBSERVATION  

When the spectral distributions for GOE, GUE, GSE, and WSD are generated from a 

single numerical non-iteration function (NIF), with only the normalization constants 

being modified, the resulting datasets remain structurally homogeneous. As a 

consequence, the empirical and theoretical distributions exhibit an almost perfect 

overlap, confirming the expected universality of the Wigner–Dyson statistics. 

Conversely, when each ensemble is produced by a different NIF, small visual 

discrepancies appear, even though the statistical indicators (p-value and normalized 

standard deviation) remain within acceptable limits.  

 

Conclusion 

 

This work presents a simple and direct analytical approach for modeling the universal 

spectral distributions of random matrix theory.A single non-iterative function 

successfully reproduces the four fundamental spectral laws, GUE, GOE, GSE, and 

WSD, confirming the existence of a common mathematical structure underlying these 

chaotic regimes.Several additional NIFs were then constructed to reproduce the GOE 

distribution with high precision, yielding normalized standard deviation and p-value 

results in perfect agreement with the theoretical Wigner–Dyson law.Finally, the 

nonlinear transformation linking a heavy-tailed distribution to a GOE distribution 

illustrates a remarkable analytical transition: the passage from a non-ergodic regime 

dominated by extreme fluctuations to a universal chaotic regime governed by statistical  
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regularity. Together, these results demonstrate that the spectral laws of quantum chaos 

can emerge from closed-form analytical expressions, without iteration, numerical 

integration, or random matrices.This functional simplicity, combined with high 

statistical accuracy, highlights the universal, deterministic, and non-iterative nature of 

the proposed formalism, paving the way for a unified and rigorous modeling of spectral 

chaos. Finally, the same non-iterative formalism reproduces deterministic Lévy flights, 

showing that complex diffusive processes can emerge directly from a closed-form 

analytical structure. This result confirms the universal nature of the proposed functional 

family, capable of unifying spectral laws, nonlinear dynamical systems, and spatial 

morphogenesis within a single analytical architecture.  

 

 

References 
 

[1]. Wigner, E.P., On the Distribution of the Roots of Certain Symmetry Matrices, The 

Annals of Mathematics, 67 (1958), no. 2, 325–327. https://doi.org/10.2307/1970008. 

 

[2]. Dyson, F.J., A Brownian Motion Model for the Eigenvalues of a Random Matrix, 

Journal of Mathematical Physics, 3 (1962), no. 6, 1191–1198. 

https://doi.org/10.1063/1.1703862 

 

[3]. Montgomery, H.L., The Pair Correlation of the Zeros of the Zeta Function, 

Proceedings of Symposia in Pure Mathematics, 24 (1973), 181–193. 

https://doi.org/10.1090/pspum/024/9944.  

 

[4]. Odlyzko, A.M., On the Distribution of Spacing Between Zeros of the Zeta 

Function, Mathematics of Computation, 48 (1987), no. 177, 273–308. 

https://doi.org/10.1090/s0025-5718-1987-0866115-0 

 

[5]. Elmesbahi, J., Synthesis of Large Diversity of Forms by Non-Recursive Equations, 

Applied Mathematical Sciences, 15 (2021), no.16, 797-811. 

https://doi.org/10.12988/ams.2021.916578 

 

[6]. Elmesbahi, J., Attractors in Non-Recursive Systems, Applied Mathematical 

Sciences, 18 (2024), no. 6, 253-268. https://doi.org/10.12988/ams.2024.919145. 

 

[7] Elmesbahi, J., Modelling a wide range of Signals of Different Distributions by Non-

Iterative Functions, Applied Mathematical Sciences, 14 (2020), no. 20, 935-951. 

https://doi.org/10.12988/ams.2020.914341 

 

 

https://doi.org/10.12988/ams.2024.919145
https://doi.org/10.12988/ams.2020.914341


 

282                                                                                                             Jelloul Elmesbahi 

 

 

[8]. Elmesbahi, J., Faithful Reproduction of the Statistical Properties of the Robert May 

(r=4) Logistic Equation via a Simple Non-Recursive Formula, Applied Mathematical 

Sciences, 18 (2024), no. 5, 223-226. https://doi.org/10.12988/ams.2024.919125 

 

Received: October 1, 2025; Published: October 22, 2025                                                                                


