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Abstract

In the present paper we have studied the Finslerian Hypersurface and Randers
Change of Finsler metric. We have also proved that Randers change makes three
types of hypersurfaces invariant under certain condition. These three type of
hypersurfaces are hyperplanes of first, second and third kind.
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1. Introduction

Let F™=(M" L) be an n — dimensional Finsler Space on a differentiable
Manifold M™, equipped with the fundamental function L(x ,y ) . In 1984 C. Shibta
[3] introduced the transformation of Finsler metric

(1.1) L'(xy)=f(LB),

where B = b;(x)y" , b;(x) are the components of a covariant vector in F™ and f
be a positively homogeneous function of degree one in L and 3 . This change of
metric is called a B-change.

In the present paper the metric function is defined as

(1.2) L'(x,y) = L(x,y) + A(x,y) ,

where A(X,y) = a;(x)y" is a 1-form on the manifold M™. The change of metric is
called a Randers change.

If L(x,y) reduces to the metric function of Riemannian space then L*(x, y) reduces
to the metric function of space generated by Randers metric.

On the other hand in 1985, M.Matsumoto investigated the theorey of
Finslerian hypersurface [5] . In the year 2018, G. Shanker and R.S. Kushwaha [4]
studied the Finslerian hypersurface and Quartic Change of Finsler metric . Again in
the year 2005, Prasad and Tripathi [2] studied the Finslerian hypersurfaces and
Kropina Change of Finsler metric and obtained different results in this paper.

2. Preliminaries

The hypersurface ~ F" ' = (M™ 1, L(w,v)) of the Finsler space F" =
(M™ L(x,y)) may be represented by the equations x'=x!(u%),i=
1,2....,n; a =1,2,...,n — 1;where u® are Gaussian coordinates on F*~1 . We

suppose that the matrix consisting of projection factors BL = % is of rank (n-1).

Then B., may be regarded as (n-1) linearly independent vectors tangent to F*~1 at
a point u“. The supporting element y* at a point u® of F™~! is assumed to be
tangential to F™~1 so that

yt = Blv® .
Thus v* is the supporting element of F™*~1 at a point u®. The metric tensor
9ap(u, v)of F*~1is given by
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9ap = 9ijBaBy

where g;; are components of the fundamental metric tensor of F™ . The components
N(u, v) of unit normal vector at a point u® of F*~* are given by

1) (8 gyBiN/ =0,
(b) giyN'N =1 .

If (BF,N;) be the inverse matrix of (B} ,N'), then we have

22) (@ BIBp=6f

(b) BiN;=0,
() BfN'=0,
(d NN;=1 ,

(€) BLBf+N'N; =6} .

We introduce the following important tensors from Cartan’s C-tensor |C;;, =
g 1mp J
1094
2 ayk) '
(2.3) (@ Mqp = CijBiBsN*
(b) M, = C;;xBLNIN*.

The induced Finsler connection IFT = (Fg,, N§,Cg,) of the Finsler connection
FI = (F},, N}, C},.) is given by [5]

(24) (@ F§ =B&{Bh, +BJ(FLBf + CiN¥H,)},
() Nf = B (B3 + N/B)
(c) C§, = BfC/BiB)

where

92t

i _ pi a
ouBouy ! BOﬁ_Baﬁv

i
Bﬁy -
and
— i inJ
H, = Ni(B(l)V + leBy) .
The relative h — covariant and v —covariant derivative of the projection factor B},
are given by [5] :
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(25) (a) B;|ﬁ= aN',

i i
(0) B!| = KapN',
where
Hap = Ni(Bip + FjB4Bf) + My Hy
and
Kag = N:CjB4Bj
are called the second fundamental h —tensor and v —tensor respectively.

3. Randers Change of Finsler Metric

Let F™ be a given Finsler space and let a; (x)dx* be 1-form on M™. We shall define
on M™ a function L*(x,y) (> 0) by the equation (1.2) where we put A(x,y) =
a;(x)y" .

To find the metric tensor gy, , the angular metric tensor hy, , the Cartan C-
tensor Cpy; of F* = (M", L") , we use the following results :

0A

B @ =
0) =1 |

alj 1
(©) 2yl LM

where h;; are the components of the angular metric tensor of F™ given by
hij = 9ij — Ll
o%L
=Lloay -
In view of (3.1) the successive differentiation of (1.2) with respect to y" and y*
gives :

(32) l;; = lh + ap .
(33) h;;k = Thhk y
where T =Lf .

The fundamental metric tensor gy, = hp + Il isgiven by :

* A
(3.4) Ihk = TGnk + anay + (aply, + aly) — Zlhlk .
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Differentiating (3.4) with respect to y’/ and using (3.1) we get

* 1
(35) Chkj = TChkj - Z(hhkmj + hhjmk + hkjmh) )
A
where m; = Zli —-a; .
It is to be noted that

. . 2 . . .
(36) ml-ll = 0, mial = i—z— a2 ) hijl] =0 ,hijmf = hijaf =m;,

where
m! = gm; = %li —at.
Proposition (3.1): In view of (1.2) Randers change of Finsler metric the Cartan’s
C-tensor is given by (3.5) .

4. Hypersurface Given by a Randers Change

Suppose a Finsler hypersurface F*~1 = (M™1, L) of the Finsler Space F™ and
another Finsler hypersurface F**~1 = (M™~1,L*) of the Randers change of the
Finsler Space F*" . Thus we shall show that a unit normal vector N** of F**~1 is
uniquely determined by

(1) (@ giBEN* =0
(0) gV "N =1

Contracting (3.4) by N"N* and using (2.1) (a) , (b) , [;N! = 0, we get :
greNPN* =17+ (a,NM)? |
Thus we obtain :

h k
PO TR L | U L

/1’+(ahNh)2 B ,‘L’+(ahNh)2

Hence we can put
(4.2) N*h =

Nh

,T+(ahNh)2 ,
where we have chosen the positive sign in order to fix an orientation .
Using (2.1) , (3.4), (4.1) and (4.2) , we obtain from (4.1) (a) , we get
(apB! + 1,BMayN* =0 .
Contracting it by v%* , we get L* = 0, which is a contradiction with assumption
that
L*>0.



112 S.K. Tiwari, Brijesh Kumar Maurya and C.P. Maurya

Hence a,N"*=0.

Therefore from (4.2) is written as
*h __ N_h

(4.3) N = 7

Thus we have

Proposition (4.1):

For a field of linear frame (Bi, B, ... .. ,BL_y,N') of F™ there exists a field of
linear frame
(B{, Bi.....,BL |, N* = %) such that (4.1) is satisfied along F**~* and then a;

is tangential to both the hypersurface F*~! and F**~ 1.
The quantities B;* are uniquely defined along F**~1 by
Blfka — g*aﬁgz‘jBﬁ] ,
where ( g**F) is the inverse matrix of (Gap) -
Let (B;% N;) be the inverse of (B}, N*"), then we have
B.B? =5}
BLN; =0,
N*N; =1,
and
BLB;“ + N*IN} = &} .
We also get N; = g;;N*/ which in view of (3.4) , (2.2) and (4.3) gives :
(4.4) N =+TN;

We denote the Cartan’s connection of F™and F™ by (P}i,{,l\/ji,C']-ik) and
(Fi, N, Ciib) respectively and put D}, = Fji — Fj; , which will be called the
difference tensor . We chose that the vector field a; in F™ such that

(45) Djlk = A]-kal - Bjkll y

where Aj, and Bj, are components of a symmetric covariant tensor of second order

Now N;a' = 0 and N;I* = 0, from (4.5) we get

(46)  NiDj =0 , NiFjx = NiF
and
N’ Dy, =
Thus from (2.4) and (4.3) , we get
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(4.7) H.,=+tH, .

If each path of a hypersurface F™~1 with respect to the induced connection is also
a path of enveloping space F™ , then F™~1 is called a hyperplane of the first kind
[1] . A hyperplane of the first kind is characterizedby H, = 0.

Hence we have from (4.7)

Theorem (4.1):

If a;(x) be avector field in F" satisfying (4.5) , then a hypersurface F™" ! isa
hyperplane of the first kind iff the hypersurface F*™~! is a hyperplane of the first
kind .

Again contracting (3.5) by BXN**N*J and paying attention to (4.4) , m;N* =0,
hyxyN/N*¥ =1 and h;;BEN/ =0, we get

(4.8) My = My ——mBf, .

From (2.3), (4.4),(4.5), (4.6), (4.7) and (4.8) , we have
* 1 i

(49)  Hip =7 (Hap — 5=m;BiHg) .

If each h-path of a hypersurface F™~! with respect to the induced connection is
also h-path of the enveloping space F™ , then F™*~1 is called a hyperplane of the
second kind [1] . A hyperplane of the second kind is characterized by H,z = 0.
Now H,z = 0 implies H, =0,

Thus we have from (4.7) and (4.9) :

Theorem (4.2):

If a;(x) be avector field in F" satisfying (4.5) , then a hypersurface F™" !isa
hyperplane of the second kind iff the hypersurface F**~1 is a hyperplane of the
second kind .

Lastly contracting (3.5) by B&‘B/’;"N *J and paying attention to (4.3) , we have

(4.10) Mgz =T Mg .

If the unit normal vector of F™~1 is parallel along each curve of F*~1, then F"*~1
is called a hyperplane of the third kind [1] . A hyperplane of third kind is
characterized by Hyp =0,

Mg =0 .

Thus we have from (4.7), (4.9) and (4.10) :
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Theorem (4.3):

If a;(x) be avector field in F™ satisfying (4.5) , then a hypersurface F™ ! isa
hyperplane of the third kind iff the hypersurface F**~1 is a hyperplane of the third
kind.
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