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Abstract

The Betz theory states that a horizontal axis wind turbine can only
extract less than 16

27 (59.3%) of the kinetic energy of the wind. The value
16
27 (0.592) is called the Betz limit. In 1919, Albert Betz used a method
that is analytic to derive the Betz theory and henceforth finding the
Betz limit. In the theory, he derived momentum equations of an ac-
tuator disc (AD) in the stream of wind. In this research, a Newton′s
method scheme is used to reach the Betz limit. For the axial induction
factor denoted by either a or a∗ we used a reasonable initial point guess
of 0.259. The results agree well with the analytical results of the Betz
theory. From the Newton′s method scheme results corresponding to a
and a∗, the relative errors in comparison with the Betz limit are 4%
and 0.9%, respectively. The small amount of errors shows the possibil-
ity of reaching the Betz limit using the Newton′s method scheme. If
alternate power coefficients [Cp(a) or Cp∗(a∗)] are found where the (ex-
act) value (a or a∗) cannot exactly be found analytically, the Newton′s
method scheme would be an ideal way of estimating (or calculating)
other proposed limits or the Betz limit. This method yields extremely
accurate results. Furthermore, for a quadratic equation, the quadratic
formula would do. However, if the quadratic equation has floating-point
numbers, the Newton′s method would be more appropriate.
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1 Introduction

Researchers are motivated to increase the performance of wind turbines based
on demand when they discern substantial growth of power extraction from
wind energy. The global installed wind turbine capacity was increased 22
times in 2017 compared to 2001 [1]. Researchers have come up with theories
and modified them later. One of the well-known ones is the AD theory. By
assumption of ideal and laminar flows, Rankine [2] and Froude [3, 4] used
the theory. Based on the AD theory, in 1919, Betz proved the impossibility of
energy extraction more than 16

27
(59.3%) of the available kinetic energy [5]. The

same results were found independently by Lanchester [6] and Joukowsky [7]
and henceforth the theory was called Lanchester-Betz-Joukowsky limit or
briefly Betz limit. To construct the theory Betz assumed an infinite number
of rotor blades under an axial and incompressible flow. He also assumed that
a uniform thrust was exerted on the disc with no drag force. Of recent, oper-
ational wind turbines can achieve 75% or 80% of the Betz limit value at peak
power generation [8].

Betz deduction has been presented in several ways. For example, Ochieng
and Ochieng [9] presents a mathematical power series expansion method to
obtain the Betz equation functional form to determine the maximum wind
power coefficient. In the study, Okulov [10], analytical solutions for optimising
wind turbines with specialised rotor models in the case of an infinite number
of blades has been presented. In this paper we present the estimation of the
Betz′ limit using the Newton′s method scheme.

One of the most powerful techniques in process integration is optimisation.
In the context of optimisation, best can be defined as the optimal option out
of several possible choices. By optimising an objective function, the degree of
goodness of a solution is determined [11–13]. Constraints and system models
are used as a guidance in the search process. In other words, optimising seeks
to increase (or decrease) the objective function’s value while taking into ac-
count a range of limitations (constraints). In terms of equality and inequality,
these limits are clear. In numerical optimisation the objective function is an
evaluation measure that may be minimised or maximised under a variety of
design restrictions. Computational and numerical techniques are used to in-
crease the speed up time it takes to find a solution. Several methods exist to
reduce what may be a difficult issue in analytical mathematics to simple alge-
bra and this may involve the integration or resolution of complex differential
equations [14–17].

Procedures that are iterative and converge to a solution (for a certain class
of problems) and provide approximate answers to specific issues can all be used
by researchers to solve problems. An example is Newton′s method algorithm.
Equations can be effectively solved numerically using Newton′s method. It
is based on the idea of linear approximation, as is the case with differential
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calculus (where the idea is used extensively and it’s a fundamental concept in
differential calculus). Our goal and objective is to use the Newton′s method
to reach the Betz limit.

This paper is organised as follows. Section 2 presents the idea of the Betz
theory and Newton′s method scheme in the context of the theory. Section 3
presents the results and discussion. Section 4 presents the conclusions.

2 The Betz Theory and Newton’s Method Scheme

One can calculate the maximum theoretical efficiency of a thin rotor by a
stationary disc or an AD. Energy is extracted from the stream passing through
the disc. The assumptions made are that the flows are frictionless, and there
is no rotational velocity in the wake. The disc operates like a drag device that
lowers the magnitude of the velocity [18].

The axial induction factor denoted by a can be defined as the fractional
decrease in wind velocity between the free stream and the rotor plane [18].
This implies that

a =
ui − uj
ui

, (1)

uj = ui(1− a), (2)

and,

ul = ui(1− 2a). (3)

ui and uj represent the wind speed (or average velocity at the rotor plane)
and wake velocity (or the free stream velocity) in the proximity of the disc,
respectively. ul represents the velocity behind the rotor.

The power out, P is equal to the thrust times the velocity at the disc:

P =
1

2
ρAd(u

2
i − u2l )uj. (4)

Inserting equations (2) and (3) in (4) yields

P =
1

2
ρAdu

3
i 4a(1− a)2. (5)

Replacing the control volume area at the rotor, Ad by A (which will represent
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the rotor area), and the free stream velocity, ui by u yields

P =
1

2
ρAu34a(1− a)2. (6)

Power coefficient denoted by Cp(a) usually characterises the wind turbine rotor
performance. This means that Cp(a) is equal to rotor power divided by power
in the wind [18]. Mathematically, this can be expressed as

Cp(a) =
P

1
2
ρu3A

. (7)

This non-dimensional coefficient represents the fraction of the power in the
wind that is extracted by the rotor. From equations (6) and (7), one can see
that:

Cp(a) = 4a(1− a)2. (8)

Now, the maximum Cp(a) is determined as follows:

dCp(a)

da
= 4(1− a)(1− 3a). (9)

Setting dCp(a)

da
= 0 implies that either a = 1 or a = 1

3
. Using a = 1 yields

Cp(a) = 0 and using a = 1
3

leads to Cp(a) = 16
27

= 0.592. Obviously one can
see that the maximum power coefficient corresponds to a = 1

3
leading to 0.592.

This is known as the Betz limit [18].

Furthermore, we see that C ′′p

(
a = 1

3

)
< 0 where the primes represent

derivatives with respect to a. This further shows that the Betz limit is a
maximum.

Another way of computing power is [19]

P = ρAdu
2
j(ui − ul). (10)

Equating equations (4) and (10) we have

ρAdu
2
j(ui − ul) =

1

2
ρAduj(u

2
i − u2l ), (11)

which yields

uj =
1

2
(ui + ul), (12)

since the density cannot be zero for any uj and Ad.
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To find the other power function [Cp∗(a∗)] used to calculate the Betz limit,
we use equation (12) in the first line of equation (4). This results in

P∗ =
1

2
ρAd

1

2
(ui + ul)(u

2
i − u2l ). (13)

Writing this equation in a more suggestive form yields

P∗ =
1

2
ρAdu

3
i

1

2

[
1 +

(
ul
ui

)
−

(
ul
ui

)2

−

(
ul
ui

)3]
. (14)

Again replacing the control volume area at the rotor, Ad by A (which will
represent the rotor area), and the free stream velocity ui by u leads to

P∗ =
1

2
ρAu3

1

2

[
1 +

(
ul
u

)
−

(
ul
u

)2

−

(
ul
u

)3]
. (15)

Now, we let a∗ = ul

u
. This means that

P∗ =
1

2
ρAu3

1

2
(1 + a∗ − a2∗ − a3∗). (16)

Henceforth

Cp∗(a∗) =
P∗

1
2
ρAu3

=
1

2
(1 + a∗ − a2∗ − a3∗). (17)

The maximum Cp∗(a∗) is determined as follows:

dCp∗(a∗)

da∗
=

1

2
(a∗ + 1)(3a∗ − 1). (18)

Setting dCp∗ (a∗)
da∗

implies that a∗ = −1 or a∗ = 1
3
. Using a∗ = −1 yields

Cp∗(a∗) = 0 and a∗ = 1
3

leads to Cp∗(a∗) = 16
27

= 0.592. Obviously one
can see that the maximum power coefficient corresponds to a∗ = 1

3
leading to

Cp∗(a∗) = 0.592 which is the Betz limit.

Furthermore, we see that C ′′p∗

(
a∗ = 1

3

)
< 0 where the primes represent

derivatives with respect to a∗. This further shows that the Betz limit is a
maximum.

Now, we can explore the Newton′s method in the context of the Betz
theory.

Suppose the function Cp(a) [this can be done for Cp∗(a∗) as well] is k + 1
times differentiable on an open interval I. For any points a and a + h in I
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there exists a point w between a and a+ h such that

Cp(a+ h) = Cp(a) + C ′p(a)h+ ..+
1

k!
C [k]

p (a)hk +
1

(k + 1)!
C [k+1]

p (w)hk+1.(19)

It is easy to show that as h goes to 0 the higher order terms in equation (19)
go to 0 much faster than h goes to 0. This means that (for small values of h)

Cp(a+ h) ≈ Cp(a) + C ′p(a)h. (20)

This is referred to as a first order Taylor approximation of Cp(a) at a. A more
accurate approximation to Cp(a+ h) can be constructed for small values of h
as:

Cp(a+ h) ≈ Cp(a) + C ′p(a)h+
1

2
C ′′p (a)h2. (21)

This is known as a second order Taylor approximation of Cp(a) at a.

Note that the first order Taylor approximation can be rewritten as:

Cp(a+ h) ≈ d+ eh (22)

where d = Cp(a) and e = C ′p(a). This means that the first order Taylor
approximation is a linear function in h.

Similarly, the second order Taylor approximation can be rewritten as:

Cp(a+ h) ≈ d+ eh+
1

2
gh2, (23)

where g = C ′′p (a). This means that the second order Taylor approximation is
a second order polynomial in h.

Suppose we want to find the value of a that maximises

Cp(a) = d+ ea+ ga2. (24)

First, we calculate the first derivative of Cp(a):

C ′p(a) = e+ 2ga. (25)

We know that C ′p(â) = 0, where â represents the value of a at which Cp(a)
attains its maximum and hence yields

â = − e

2g
. (26)
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The second order condition is C ′′p (a) = 2g < 0. This means that Cp

(
− e

2g

)
will be a maximum whenever g < 0.

Suppose we want to find the value of a that maximises some twice contin-
uously differentiable function Cp(a). Recall that

Cp(a+ h) ≈ d+ eh+
1

2
gh2, (27)

where d = Cp(a), e = C ′p(a), and g = C ′′p (a). This means

C ′p(a+ h) ≈ e+ gh. (28)

The first order condition for the value of h (denoted ĥ) that maximises Cp(a+h)
leads to

ĥ = −e
g
. (29)

In other words, the value that maximises the second order Taylor approxima-
tion to Cp(a) at a is

a+ ĥ = a− 1

C ′′p (a)
C ′p(a). (30)

With this in mind we can specify the Newton′s method scheme for one (1)
dimensional function optimisation such as on equations (8) and (17).

Now, from equation (8),

C ′p(a) = 4− 16a+ 12a2. (31)

Further differentiation of equation (31) yields

C ′′p (a) = −16 + 24a. (32)

Using equations (31) and (32) in equation (30) leads to

a+ ĥ = a−

(
1− 4a+ 3a2

6a− 4

)
. (33)

This is one of Newton′s method for one (1) dimensional optimisation in the
context of the Betz theory.

From equation (17),

C ′p∗(a∗) =
1

2
(1− 2a∗ − 3a2∗). (34)
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Further differentiation of equation (34) leads to

C ′′p∗(a∗) = −1− 3a∗. (35)

Using equations (34) and (35) in equation (30) yields

a∗ + h = a∗ −

(
3a2∗ + 2a∗ − 1

2 + 6a∗

)
. (36)

This is also one of Newton′s method for one (1) dimensional optimisation in
the context of the Betz theory. Using a python code we used (or investigated)
these methods in order to find Cp(a) and Cp∗(a∗) given a suitable initial point
(or guess) a and a∗, respectively.

3 Results and Discussion

There is no general criterion to decide the best initial point a or a∗ to be used
in equation (33) or (36), respectively. However, for equation (33), we can start
from a point inside an interval I = [c∗, d∗], such that the function is continuous
in I and Cp(c∗).Cp(d∗) < 0 where c∗ and d∗∈R. For equation (33) we start
from a point inside the interval I = [−1, 2], and we see that the function Cp(a)
is continuous in I and Cp(−1).Cp(2) < 0. That guess or point is 0.259. The
guess for equation (36) is a∗ = 0.259 as well. From equations (9) and (28), the
optimum induction factor in generating the highest performance coefficient is
1
3

(0.3).
The results of the performance coefficients [Cp(a) and Cp∗(a∗)] are 0.568847916

and 0.587272511, respectively. The maximum values of the Cp(a) and Cp∗(a∗)
is 16

27
(the Betz limit). This is equivalent to 0.592. The average deviations from

the Betz limit are 4% and 0.9%, respectively. The low errors show that the
results from the Newton′s method scheme agree well with the Betz theory. It
is possible to reach the Betz limit value via the Newton′s method scheme by
choosing a suitable initial point or guess for a or a∗.

Furthermore, we see that C ′′p

(
a = 1

3

)
< 0 and C ′′p∗

(
a∗ = 1

3

)
< 0. This

shows that the Betz limit is a maximum.
If alternate power coefficients [Cp(a) or Cp∗(a∗)] are found [such as in [20]

and if the (exact) value (a or a∗) cannot be found for example], the Newton′s
method would be an ideal way of estimating (or calculating) the other proposed
limits (and the Betz limit as well). As one can see this method yields very
accurate results.

For a quadratic equation, the quadratic formula would do. However, if the
quadratic equation has floating-point numbers, the Newton′s method would
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be more appropriate. In the quadratic equation, if the coefficient of the linear
dependent variable is large relative to the other coefficients, the quadratic
formula can give wrong results when implemented in floating point arithmetic.
Hence the need for the Newton′s method.

4 Conclusions

Newton′s method scheme in the context of the Betz theory was constructed
and used. The aim is to reach the Betz limit using the Newton′s method
scheme. We derived the Newton′s method scheme in the context of the Betz
theory and used it [on the functions Cp(a) and Cp∗(a∗)]. The results obtained
were in good agreement. The errors in comparison with the Betz limit were
4% and 0.9%. This means that it is possible to reach the Betz limit using the
Newton′s method scheme by choosing a suitable initial point.

References

[1] Global Wind Statistics (GWEC) report 2017.

[2] W. J. Rankine, Transactions, Institute of Naval Architects, Vol. 19, 1878,
P.47.

[3] W. Froude, Transactions, Institute of Naval Architects, Vol. 6, 1865, P.13.

[4] R. E. Froude, Transactions, Institute of Naval Architects, Vol. 30, 1889,
P.390.

[5] A. Betz, Theoretical limit for the best utilization of wind by wind-motors,
Magazine for the Entire Turbine System, 20 (1920), 307-309.

[6] F. W. Lanchester, A Contribution to the theory of propulsion and
the screw propeller, Journal of the American Society for Naval En-
gineers, 27 (1915), no. 2, 509-510. https://doi.org/10.1111/j.1559-
3584.1915.tb00408.x

[7] N. E. Joukowsky, Windmill of the NEJ type. Transactions of the Cen-
tral Institute for Aero- Hydrodynamics of Moscow. Also published in
Joukowsky N. E.. Collected Papers Vol VI. The Joukowsky Institute for
AeroHydrodynamics, Moscow: vol VI, 1920, 405-409, 1937 (in Russian).

[8] T. Burton et al., Wind Energy Handbook, John Wiley and Sons, 65, 2001.

[9] R. M. Ochieng and R. O. Ochieng, A power series formulation of the Betz
criterion and equation in a wind turbine, International Journal of Energy,
Environment and Economics, 23 (2015), no. 2, 291-299.



194 Reccab O. Manyala et al.

[10] V. L. Okulov, Limit cases for rotor theories with Betz optimization, Jour-
nal of Physics Conference Series, 524 (2014), 1-8.
https://doi.org/10.1088/1742-6596/524/1/012129

[11] J. N. Kutz, Data-Driven Modeling and Scientific Computation: Methods
for Complex Systems and Big Data, Oxford University Press, 2013.

[12] R. L. Burden and J. D. Faires, Numerical Analysis (Brooks/Cole, 1997).

[13] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network Flows: Theory,
Algorithms and Applications, Prentice-Hall, Englewood Cliffs, N. J., 1993.

[14] H. Akaike, On successive transformation of probability distribution and
its application to the analysis of the optimum gradient method, Annals
of the Institute of Statistical Mathematics, 11 (1959), 1-17.
https://doi.org/10.1007/bf01831719

[15] M. Al-Baali, Descent property and global convergence of the Fletcher-
Reeves method with inexact line search, IMA. Journal on Numerical
Analysis, 5 (1985), 121-124. https://doi.org/10.1093/imanum/5.1.121

[16] E. D. Andersen and K. D. Andersen, Presolving in linear programming,
Mathematical Programming, 71 (1995), 221-245.
https://doi.org/10.1007/bf01586000

[17] A. Alridha and A. S. Al-Jilawi, Mathematical Programming Computa-
tional for Solving NP-Hardness Problem, Journal of Physics: Conference
Series, (Vol. 1818, No. 1, p. 012137). March 2021, IOP Publishing.
https://doi.org/10.1088/1742-6596/1818/1/012137

[18] J. F. Manwell, J. G. McGowan and A. L. Rogers, Wind Energy Explained:
Theory, Design and Application, John Wiley and Sons, 2010.

[19] 28 February 2025, Betz’s law, viewed 28 February 2025,
<https://en.wikipedia.org/wiki/Betz law>.

[20] J. G. Gonzalez-Hernandez and R. Salas-Cabrera, Maximum power analy-
sis in wind energy conversion systems: Questioning, findings, and new
perspective, Mathematical Problems in Engineering, 2021 (2021), 7.
https://doi.org/10.1155/2021/9932841

Received: May 21, 2025; Published: June 16, 2025


	Introduction
	The Betz Theory and Newton's Method Scheme
	Results and Discussion
	Conclusions

