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Abstract

In this paper, we present an overview of the role of helicity on the turbulent flow.
Governing equations are then derived in terms of correlation functions. Solutions
of such equations are obtained by the Smirnov's series solution method. Lastly, role
of Millionschikov's closure hypothesis of homogeneous and isotopic turbulence is
discussed.
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1. Introduction

Tsinober and Levich [25] examined the results from a wide variety of experiments
and concluded that many turbulent flows possess structures. It is generally believed
that coherent structures are dynamically significant. It is important to ascertain
whether structures are merely a result of three-dimensional instabilities of a large
scale mean flow, or whether they are universal and intrinsic to all turbulent flows
i.e.,, also to homogeneous and isotropic ones [20]. There are problems of
homogeneous and isotropic turbulence which are not invariant under plane
reflections [22]. The scalar product i.e., of velocity and vorticity in such a flow,
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say,(y-curly) is not zero. Stepanov et.al. [23], described that the helicity
H =v’1j<g-curlg>dv is the integral of motion with an arbitrary sign for the spectral

)

density of the helicity H(x) and it is possible to indicate the upper bound
|H (x)| <xE(x), where E(x) is the spectral density of the velocity fluctuation energy

and « is the wave number.
In case of two-dimensional turbulence, the vorticity =V xv is conserved by non-

linear terms of two-dimensional Navier-Stokes equation. There exist a second
inviscid integral invariant besides the energy E:% jvzdx e.g., the enstrophy

Q:%jwzdx. [10] defined the mean helicity by He = %<g-[ng]> .
The correlation tensor Q; =(u/(r',t")uj (r",t")) can be written, following Robertson’s
theory [21] of homogeneous isotropic turbulence, as

F’ rF’ H
Q; = _E;fj +(F +7j§ij +Tgijn§n (1'1)

where F and H are scalar functions of r and t;
r=r"—rf; t=t"—t]; r"=(0\%,%); r'=(x,%,%); &=x'-x and (uy,uy)=H(r,t)
Now, noting that 2H, = lim(u(r't)-[vxu(r"t)]) it can be shown that

H, _ 3tim (Y gince H(0)=0 [10].

r—0 r

Since first order solenoidal tensor is identically zero in homogeneous isotropic
turbulence possessing helicity, pressure—velocity correlation, temperature—velocity
correlation and density—velocity correlation is always zero. The topological
invariant H, is a measure of enlargerlness of velocity lines [18]. In turbulent flow,

the appropriate modification of H, is the mean helicity density H =(v-@) [12]. In

ordinary homogeneous turbulence H =0, due to reflectional symmetry. The same
is true for the mean helicity density.

H(x)=

(272_)3 4ﬂxzj<¥(0)'é’(r)>exp(i,{. r)dv=0

H (K‘) helicity spectrum, defined thus, is like mean energy spectral density in
ordinary homogeneous isotropic turbulence

E(x)= 5 4EKZI<M(O),M(F)>eXp(iK- r)dv

We shall mention now, some initial comments of Moffatt [18] on the turbulence
with helicity and associated dynamo action, that, “a lack of reflectional symmetry
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in a random ‘background’ velocity field u(x,t), and in particular a non-zero value

of the mean helicity (u-V xu), is likely to be a crucial factor as far as the effect on

large-scale magnetic field evolution is concerned. In these circumstances, it is
appropriate to consider the general nature of the dynamics of a turbulent velocity
field endowed with non-zero mean helicity. First it must be stated that turbulence
exhibiting such a lack of reflexional symmetry has seldom submitted to direct
experimental investigation in the laboratory. Nearly, all traditional studies of
turbulence (e.g., grid turbulence, boundary layer turbulence, turbulence in waves
and jets, channel and pipes turbulence etc.) have been undertaken in conditions that
guarantee reflectional symmetry of the turbulence statistics”.

2. Quadratic invariants in physical space

We follow Lesieur [11] method and write the Navier-Stokes equations for the
velocity and vorticity fields in homogeneous turbulence, as

%+uj%=—@+w2ui (1.2)
ot X, X,

and

%+uj%:a)j%+vvza)i (1.3)
ot OX. X

We derive from (1.2), imposing the homogeneity condition

%%<U2> =v(0ved) (1.4)
Noting the variance of vorticity by D(t) = %(a‘f} the enstrophy for homogeneous
turbulence, is given by D(t) = —%(U(x,t)-vzﬁ(x,t»

The mean kinetic energy evolution equation is %%<UZ> = —2vD(t) (1.5)
Now, multiplying equation (1.2) by % and equation (1.3) by u_2, , adding them and

then averaging, we obtain

dH, 1/ @ 1/ ep\ 1 ou\ e
@ +z<“"a_xj“”'“">“z<“"&>+5<”j“%>‘—V<”(M)> (19

i j

Since H, =%<U~c?)> we may transform, in view of the conditions

(A(VxEB))=(B-(VxA)) and 9x(¥xt)=-via
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where A()‘(’,t) and B(X,t) are two vector fields depending on the velocity field,
the mean helicity evolution equation, as

d;e =2 ({@-v?u)+(u-v?a)) (L.7)

Now, since the operators V* and V x commute, the latter term is equal to

<a-(€xv2a)> =(&-v?a),
Let us now note down the relation
(@-V?U) =~ d&kd&" - (o (& £1)).

H; (%,t) which is the Fourier transform of <a) (X,t)u, (X+ F,t)}.

Accordingly, we write (&, (%,t)0,(% )= H,(% ) { % &) with, for the case

dHte =v(®-V) (1.8)

The helical spectral tensor

+o0

of isotropic turbulence IH“ (k,t)di = _[ (x,t)dx. The helicity

0
dissipation rate, is given by v<c7)-VZU>=—v_[K2|3|ii(E,t)dz?zv_[ x H(xt)dx
0
and the final helicity dissipation equation is written, as

j it d;c+2vj,<H (,t)dx =0 (1.9)

For passive scalar G)(E,t) , the corresponding spectral dissipation equation can be
derived [11], as

d +o0 400
a.([EQ(K,t)dK+2KE[KZEG(K,t)dlc:O (1.10)

The equations (1.9) and (1.10) are termed as quadratic invariants of turbulence. But
they are not invariant, since the viscous dissipation will be seen as of prior
importance in three-dimensional turbulence. The viscous terms in these equations
can both dissipate and generate helicity. The helicity is thus pseudo-scalar and

H () can either be positive or negative. Helicity can play an important role in the

evolution and stability of turbulent and laminar flows [4], [5]. Brissaud et.al. [1]

introduced the concept of helical cascade and discussed the limiting cases of
2 5

parallel energy and helicity flows along the spectrum E(x)~&° 3,
15

H (K‘) ~1n &3k * corresponding to a Kolmogorov cascade, and a helicity flux with

2 7 2 4

no energy flux E(x)~77°« 3 and H(x)~7% * —ahelicity cascade (z , 77 are
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the dissipation of energy and helicity respectively) — were examined. Kraichnan [9],
denoted respectively, the total rate of energy and helicity transfer by 7 (x) and

E(zc) from all wave-numbers lower than x to all wave-numbers greater than «

E H

and put, 7(x)~« (%) ; 2(x)~K (%) where, 7 ( jp E( dp (1 11)
7(x) 7(x)

In this paper, we would construct the deductive theory of homogeneous and

isotropic turbulence possessing helicity as a basic task.

3. Correlation Method for the Homogeneous Turbulence
Possessing Helicity

We attempt to develop a deductive theory of stationary homogeneous turbulent flow
whose statistical characteristics are invariant under translations and rotations but
lack reflectional symmetry. Firstly, we will derive the correlation tensors and their
forms [15]

We consider two different points P’(r") and P"(r"), respectively, at two different
times t" and t” and construct the following correlation tensors

Q, = {u(rt)u (),

Ty = (W (O () (),

Quo = (U ()0 () ()i (r.)),

Py =(a@"(r",t")u; (r',t")uj (r',t')) (1.12)
where @” :E, r'=(x,%,X;) and r"=(x/,x;,x;), p is the density of the fluid.
Now, imposiﬁon of homogeneity and stationarity conditions would imply that all
these tensors are to be functions of the distance r =|r"—r’| between the points and

!

the interval of time t =[t"—t

We note that i=+2 or _9 according as, t" <t" or t">t'.
ot’ ot ot

The opposite is the case for a‘i that is,

0__9 or +2 accordingtoas, t"<t" or t">t'.
ot” ot ot
Furthermore,

) 0 ) ) 0?

=, =— and V/ =V.=Vi=
X 0 ox, 04 08,06

where |&]|=r (1.13)
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The second and third-order correlation tensors in homogeneous isotropic stationary
turbulence with lack of reflectional symmetry can be written as

F' rF’ H
Qij:_§§i§j+(F+ 5 )é‘ij—i_T‘c"ijngn’
T’ 1
T :Tgifjéc _E(rT""gT)(é:ié‘jK +§j5Ki)+T§K5ij +M (gj,cmfmé:i _‘9Kim§m§j)’
P, =RS&S; + Pg; (1.14)

where F, H, T,M, P, and P, are scalar functions of r and t and the primes denote

differentiation with respect to r.
It is to be noted that Q; is not symmetrical in the indices i and j but is solenoidal in

both indices, while T.

ij,x
index . P, is symmetrical in the indices i and j. No term involving ¢; & would

therefore appear in P, .
We continue now with the following provable mathematical results [15]. If A isa
scalar function of r and t, then

is symmetrical in the indices i and j and solenoidal in the

Curl[ Ag,.&, |= élfigj ~(rA' +2A)S

ij 1
2A' ,
Curl| Al&jgménd —funény )| = = &4,6 +2A40, —(rA +3A) (45 +£,6)
o o
%[A(gkqmgmgi _gqimgmgk ):| = (r 5 + 5) A{,‘iqum )
Vi[ Aggn&, | = DsAsgnés where, D, = [;TZZ+§§} ,

2 o 60
P [A(glimfm‘fj — EijmSmbi )J = D7A(glim§m§j _gijmgmgl) , Where D, = (W*‘FEJ . (1.15)

These relations are used here in the subsequent analysis of the problem.

4. Governing Equations of the Problem: Smirnov’s Method of
Solution

Next, we can derive the following equation ngﬁ =%TM +W2Q;
where the plus and minus sign is to be taken according as, t" <t" or t">t'.
This equation is transformed using the forms (1.14) for Q; and T, and the

mathematical relations (1.15) to
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1[16F' oF' _oF oH
o= e [ r 28 s |+ 2 S £ |=
z[r o 5 ( ot &j "} { ot g"”g”}

1T , d 1 1F '
{—15@. —(rT, +2T1)é’ij}+(r5+5]Mgijm§m —Ev[—lédjj —(rFl+2Fl)5ij}+VD5H1(9HH§n

ZE r r
(1.16)
0 H

Here (r5+5jT=Tl, D,F =F, leT

Equation (1.16) can be split up to the three equations

r ot r r
i(r%+2%j:(rT'+2T1)—v(rF’+2F1),

iﬂz(r§+SJM +vDH,.
r

Combining the first two equations, we may write
iﬁ:[r2+5jT ~-vD,F.
ot or
Now, the equation of motion at the point P"(r".t) is
%+iumg =—ai+va,,ui" where o"=2.
8t” 8X‘:V axi!/ p
Multiplying this equation by uju/ and averaging, we obtain
0 2 0

iETJI,i +WiT, . = Qi

el % le =X

il

o
+_
95
where the plus and minus signs are according as, t" <t'or t" > t'. The above equation
can be put into a set of two equations

[ingvDJT =5, (i2+vD7]M =R,
ot ot

where S and R are the appropriate functions of r and t. Another pair of scalar
equations which are equivalent to them are derived as,

E(r£+5)8 :—FEDSF—4H1£H1,
or\_ or or or

(r§+5jR = FD,H, - H,D,F.

In obtaining these equations, we have employed that the fourth order moment Q;
is related to the second order moment Q; as in a normal distribution

Qi = QuQy +QuQ +Qy (0,0)le (0,0) [16].
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Through some algebraic elimination process, we obtain the equations for F and H1

as
2
2 a—z— 2D F=F2D5F+4H1£Hl,
or\ ot or or

2
(6—— ’D? JleFDSHl—HlDSF. (1.17)

If H=0, thatis, H,=0(r=0) on putting F=-2Q, we derive from last two
equations, the single equation
oo Py
8_[¥_ DsJQ— 2Qar D;Q
This is Chandrasekhar's equation of helicity-free isotropic turbulent flow
5. Smirnov’s Method of Solution
For the sake of convenience, we introduce the longitudinal correlation function

f(rt)= ﬁ and the correlation function h(r,t) = <u—21> for helicity and writing

(u*) = B, we obtain from the last two equations (1.17),

ot?
82
[at——v D jh:ﬂ(f D,h-hD, f)

2
ﬁ(ﬁ__v D: jf:ﬂ(fa@ D f+4h6hj and
(1.18)

We take power series for f and h as

f =iiai’kr2‘t2k, (2o =1) and
oo (1.19)
h=>>b,rt*, (boo_l)

(1.20)

k i k
S p(p+1)(245)a, e a0+ 332001 H

p=1 q=0

where i >0, k>0.
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e m[zw (i +1)(i+2)(2i+5)(2i +7)by,, +

i k
+B>.> (p+1)(2p+5) {ai_p,k_qbpﬂ,q —b_, a0, }

p=1g=0

(1.21)

Now, if a, i=0,1,23,..are known, then &, can be determined from equation

(1.20). If b, i=0123,..are known, then b, can be determined from equation
(1.21).

6. Millionschkikov’s Hypothesis

The dynamic equation due to von Karman—Howarth [26] is given by

at S or rforl or

[ e SuL ay (1.22)

Among many measurements the one by Stewart [24] measured each term of
equation (1.22) supported that it is satisfied within the limits of experimental errors.
From (1.22) we can find

3

gzu_zr“f (r)dr:(lF)E [r4k(r)]:+?_vl?[l'4%:|: (1.23)

Now, if limr*k(r)=0 and timr* L~ 0 we obtain %J'u_zr“f(r)drzo
0

ro>=  or
and accordingly, Tu_zr“f (r)dr=A  where A is constant. (1.24)

The above equation (1.24) is known as Loitsianskii’s integral invariant [13]. In the
final period decay, 4!, 0 and the non-linear term becomes unimportant, as we may
\'

put k(r)=0 and then equation (1.22) reduces to

ﬁ=2—fg[r@j (1.25)
ot rior\ or

2
and we have the solution f(r,t):exp(—%)

14

Substitution of this result into equation (1.24) we obtain A = 48\/5(vt)§ u
5

from which we see that during the late stages of decay u® =t 2.

Let us consider the equation for the double correlation of fluctuating pressures at
points A and B in homogeneous and isotropic turbulence as [14]
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o Pripe _a“(uiuj)A(uku,)B
DEOEDEOE,  OEDE0EDE,

where & =(x)s—(x), and r’=&¢

84(uiuj )A (uy,),

Under isotropic conditions, we may write ———A-—_F _\
06,0£,06,0¢,
o' (r
It can be derived now %% =M (rt)

Now, Q, ,(r,t) is assumed to decrease rapidly to zero with the indefinite increase
of r, as such for any value of n, we have m%[mw (rt)]=0

Finally, Q, , (r,t) can be calculated from M (r,t) by a single integration process,
as

Q,, (1) =?1rjr‘dr’(r’—r)3 M (1)
At this stage, we make the simplifying assumption due to Millionschikov [16] e.qg.,
about the quadruple correlation (uu, )A(ukul ), that the joint probability
distribution of turbulent velocities is normal. In effect, we have the relation

(wy, )A(uku, ). =(uy, )A -(uiuj )A (), (g - (u, )A(Ul ) *

+u;) , (W), '(ui )A(“k)s =Q,;(0)Qci (0)+Q,, (r)Q;; (r)+Q; (r)Qu (1)

Physically, the hypothesis is explained, as Hinze [8]. Though the probability density
of turbulent velocity may be Gaussian, the joint probability density cannot be
Gaussian since a zero value of fourth-order cumulant would lead to non positive
parts of the energy spectrum.

Remarks

i) Millionschikov’s quasi-normality hypothesis is very useful for closure of
homogeneous and isotropic turbulence as such a hypothesis has been proved
to be valid within the limits of experimental errors.

i) To gain more insight into the closure problems of turbulence, data from
recent and advanced level measurements are to be brought into account in
developing the appropriate models.

iii) As and when necessary, modification of this hypothesis is welcomed, as
Ogura [19] has pointed that tentatively, the errors that arise from finite
difference approximations in numerical integration of the main equation of
turbulence are not responsible for the generation of the negative energy
spectrum but are the consequences of the quasi-normality hypothesis itself.
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iv) Third-order moments of the velocity field should not be assumed zero and

it should be considered into the calculation even at the initial evolution of
spectral energy of turbulence.
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