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Abstract 
 

In this paper, we present an overview of the role of helicity on the turbulent flow. 

Governing equations are then derived in terms of correlation functions. Solutions 

of such equations are obtained by the Smirnov's series solution method. Lastly, role 

of Millionschikov's closure hypothesis of homogeneous and isotopic turbulence is 

discussed. 
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1. Introduction 
 

Tsinober and Levich [25] examined the results from a wide variety of experiments 

and concluded that many turbulent flows possess structures. It is generally believed 

that coherent structures are dynamically significant. It is important to ascertain 

whether structures are merely a result of three-dimensional instabilities of a large 

scale mean flow, or whether they are universal and intrinsic to all turbulent flows 

i.e., also to homogeneous and isotropic ones [20]. There are problems of 

homogeneous and isotropic turbulence which are not invariant under plane 

reflections  [22]. The scalar product i.e., of velocity and vorticity in such a flow, 
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say, v curlv  is not zero. Stepanov et.al. [23], described that the helicity 

1

v

H v u curlu dv   is the integral of motion with an arbitrary sign for the spectral 

density of the helicity  H   and it is possible to indicate the upper bound 

   H E   , where  E   is the spectral density of the velocity fluctuation energy 

and κ is the wave number. 

In case of two-dimensional turbulence, the vorticity v   is conserved by non-

linear terms of two-dimensional Navier-Stokes equation. There exist a second 

inviscid integral invariant besides the energy 21

2
v

E v d   e.g., the enstrophy 

21

2
v

d    . [10] defined the mean helicity by  
1

2
He u u   . 

The correlation tensor    , ,ij i jQ u r t u r t       can be written, following Robertson’s 

theory [21] of homogeneous isotropic turbulence, as 

 

2 2
ij i j ij ijn n

F rF H
Q F

r r
    
  

     
 

          (1.1) 

where F and H are scalar functions of r and t; 

     1 2 3 1 2 3 2 3; ; , , ; , , ; and , ,i i ir r r t t t r x x x r x x x x x u u H r t                         

Now, noting that    2 lim , ,e
r r

H u r t u r t
 

       it can be shown that 

 
0

,
3lime

r

H r t
H

r
   since  0 0H   [10]. 

Since first order solenoidal tensor is identically zero in homogeneous isotropic 

turbulence possessing helicity, pressure–velocity correlation, temperature–velocity 

correlation and density–velocity correlation is always zero. The topological 

invariant vH  is a measure of enlargerlness of velocity lines [18]. In turbulent flow, 

the appropriate modification of vH  is the mean helicity density H v    [12]. In 

ordinary homogeneous turbulence 0H  , due to reflectional symmetry. The same 

is true for the mean helicity density. 

 
 

     2

3

1
4 0 exp 0

2
H v r i r dv   


     

 H   helicity spectrum, defined thus, is like mean energy spectral density in 

ordinary homogeneous isotropic turbulence 

 
 

     2

3

1
4 0 , exp

2
E v v r i r dv  


   

We shall mention now, some initial comments of Moffatt [18] on the turbulence 

with helicity and associated dynamo action, that, “a lack of reflectional symmetry  
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in a random ‘background’ velocity field  ,u x t , and in particular a non-zero value 

of the mean helicity u u , is likely to be a crucial factor as far as the effect on 

large-scale magnetic field evolution is concerned. In these circumstances, it is 

appropriate to consider the general nature of the dynamics of a turbulent velocity 

field endowed with non-zero mean helicity. First it must be stated that turbulence 

exhibiting such a lack of reflexional symmetry has seldom submitted to direct 

experimental investigation in the laboratory. Nearly, all traditional studies of 

turbulence (e.g., grid turbulence, boundary layer turbulence, turbulence in waves 

and jets, channel and pipes turbulence etc.) have been undertaken in conditions that 

guarantee reflectional symmetry of the turbulence statistics”. 

 

2. Quadratic invariants in physical space 
 

We follow Lesieur [11] method and write the Navier-Stokes equations for the 

velocity and vorticity fields in homogeneous turbulence, as 

 

2i i
j i

j i

u u p
u v u

t x x

  
    

  
           (1.2) 

and  

2i i i
j j i

j j

u
u v

t x x

 
 

  
   

  
          (1.3) 

We derive from (1.2), imposing the homogeneity condition 

 2 21

2

d
u v u u

dt
              (1.4) 

Noting the variance of vorticity by   21

2
D t   the enstrophy for homogeneous 

turbulence, is given by      21
, ,

2
D t u x t u x t    

The mean kinetic energy evolution equation is   21
2

2

d
u vD t

dt
       (1.5) 

Now, multiplying equation (1.2) by 
2

i  and equation (1.3) by 
2

iu
, adding them and 

then averaging, we obtain 

   
1 1 1

2 2 2

e i
j i i i j i

j i j

dH up
u u u v

dt x x x
    

 
       

  
     (1.6) 

Since 
1

2
eH u     we may transform, in view of the conditions 

   A B B A       and    2u u     
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where  ,A x t  and  ,B x t  are two vector fields depending on the velocity field, 

the mean helicity evolution equation, as 

 2 2

2

edH v
u u

dt
               (1.7) 

Now, since the operators 2  and   commute, the latter term is equal to 

 2 2u u u    , which gives  2edH
v u

dt
         (1.8) 

Let us now note down the relation 
     2 2 ˆ ˆ, ,

i x

iu d d e t u t
 

      
      . The helical spectral tensor 

 ˆ ,ijH t  which is the Fourier transform of    , ,i jx t u x r t  .  

Accordingly, we write         ˆˆ ˆ, , ,i i i it u t H t          with, for the case 

of isotropic turbulence    
0

1 ˆ , ,
2

e iiH H t d H t d   


   . The helicity 

dissipation rate, is given by     2 2 2

0

ˆ , ,iiv u v H t d v H t d      


      

and the final helicity dissipation equation is written, as 

   2

0 0

, 2 , 0
d

H t d v H t d
dt

    
 

            (1.9) 

For passive scalar  , t , the corresponding spectral dissipation equation can be 

derived [11], as 

   2

0 0

, 2 , 0
d

E t d E t d
dt

      
 

          (1.10) 

The equations (1.9) and (1.10) are termed as quadratic invariants of turbulence. But 

they are not invariant, since the viscous dissipation will be seen as of prior 

importance in three-dimensional turbulence. The viscous terms in these equations 

can both dissipate and generate helicity. The helicity is thus pseudo-scalar and 

 H   can either be positive or negative. Helicity can play an important role in the 

evolution and stability of turbulent and laminar flows [4], [5]. Brissaud et.al. [1] 

introduced the concept of helical cascade and discussed the limiting cases of 

parallel energy and helicity flows along the spectrum  
2 5

3 3E   


 , 

 
1 5

3 3H    


  corresponding to a Kolmogorov cascade, and a helicity flux with 

no energy flux  
2 7

3 3E   


  and  
2 4

3 3H   


  –a helicity cascade ( ,   are  
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the dissipation of energy and helicity respectively) – were examined. Kraichnan [9], 

denoted respectively, the total rate of energy and helicity transfer by     and 

   from all wave-numbers lower than   to all wave-numbers greater than 

and put,  
 

 

E 
  

 
 ;  

 

 

H 
 

 
   where,    

1

2
2

0

p E p dp 


 

  
 
   (1.11) 

In this paper, we would construct the deductive theory of homogeneous and 

isotropic turbulence possessing helicity as a basic task. 

 

3. Correlation Method for the Homogeneous Turbulence 

Possessing Helicity 
 

We attempt to develop a deductive theory of stationary homogeneous turbulent flow 

whose statistical characteristics are invariant under translations and rotations but 

lack reflectional symmetry. Firstly, we will derive the correlation tensors and their 

forms [15] 

We consider two different points  P r   and  P r  , respectively, at two different 

times t  and t  and construct the following correlation tensors  

   , ,ij i jQ u r t u r t      ,        

     , , , ,ij k i j kT u r t u r t u r t         ,       

       , , , , ,ij kl i j k lQ u r t u r t u r t u r t            ,     

     , , ,ij i jP r t u r t u r t                  (1.12) 

where    1 2 3 1 2 3, , , and , ,
p

r x x x r x x x



           ,   is the density of the fluid.  

Now, imposition of homogeneity and stationarity conditions would imply that all 

these tensors are to be functions of the distance r r r    between the points and 

the interval of time t t t   .  

We note that or
t t t

  
  
  

  according as, ort t t t     .  

The opposite is the case for 
t




, that is,   

or
t t t

  
  

  
 according to as, ort t t t     .  

Furthermore,  

,
k k k kx x 

   
  

    
  and 

2
2 2 2

r r

i i


 

 


     

 
 where  r     (1.13) 
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The second and third-order correlation tensors in homogeneous isotropic stationary 

turbulence with lack of reflectional symmetry can be written as 

 

,
2 2

ij i j ij ijn n

F rF H
Q F

r r
    
  

     
 

          

    ,

1
3

2
ij i j i j j i ij j m m i im m j

T
T rT T T M

r
                    


       , 

1 2ij i j ijP P P              (1.14) 

 

where 
1 2, , , , andF H T M P P  are scalar functions of r  and t  and the primes denote 

differentiation with respect to r.  

It is to be noted that 
ijQ  is not symmetrical in the indices i and j but is solenoidal in 

both indices, while 
,ijT   is symmetrical in the indices i and j and solenoidal in the 

index κ. 
ijP  is symmetrical in the indices i and j. No term involving 

ij    would 

therefore appear in 
ijP . 

We continue now with the following provable mathematical results [15]. If A  is a 

scalar function of r  and t , then 

 

 2iqn n i j ij

A
Curl A rA A

r
    


      ,           

    
2

2 3jqm m i qim m j i j k k ij i jk j ki

A
Curl A A rA A

r
              


       
 

 

  5kqm m i qim m k iqm m

k

A r A
r

       


         
,          

2

5iqm m iqm mA D A        , where,  
2

5 2

4
D

r rr

  
  

 
, 

   2

7lim m j ijm m l lim m j ijm m lA D A                
 

,  where  
2

7 2

6
D

r rr

  
  

 
.   (1.15) 

These relations are used here in the subsequent analysis of the problem. 

 

 

4. Governing Equations of the Problem: Smirnov’s Method of 

Solution 
 

Next, we can derive the following equation 2

,ij ik j ij

k

Q T Q
t




 
   
 

        

where the plus and minus sign is to be taken according as, t t   or t t  . 

This equation is transformed using the forms (1.14) for 
ijQ  and 

ijT  and the 

mathematical relations (1.15) to 
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   

1

1 1

1 1 1 1 5 1

1 1
2

2

1 1
2 5 2

2 2

i j ij ijn n

i j ij ijm m i j ij ijn n

HF F F
r

r t t t t

T F
rT T r M rF F D H

r r r

    

           

         
                

     
                 

(1.16) 

Here     15r T T
r

 
  

 
,     5 1D F F ,     1

H
H

r
  

Equation (1.16) can be split up to the three equations 

 

 1 11 T FF

r t r r


  
   

 
,              

    1 12 2 2 ,
F F

r rT T rF F
t t


  

       
  

          

1

5 15 .
H

r M D H
t r


  

    
  

            

Combining the first two equations, we may write   

55
F

r T D F
t r


  

    
  

.            

Now, the equation of motion at the point  ,P r t   is 

2i

i k r i

k i

u
u u u

t x x


 

   
      

    
   where   

p





  . 

Multiplying this equation by 
j lu u   and averaging, we obtain 

 2

, , , ,jl i jl i jl ik jl jl i

k i

T T Q P X
t


 

  
     
  

 

where the plus and minus signs are according as, t" < t' or t" > t'. The above equation 

can be put into a set of two equations 

 
7D T S

t


 
   
 

, 
7D M R

t


 
   
 

,           

where S  and R  are the appropriate functions of r  and t . Another pair of scalar 

equations which are equivalent to them are derived as, 

 

 5 1 15 4r S F D F H H
r r r r

    
    

    
,            

 5 1 1 55 .r R FD H H D F
r

 
   

 
             

In obtaining these equations, we have employed that the fourth order moment 
,ij klQ  

is related to the second order moment 
ijQ  as in a normal distribution 

   , 0,0 0,0ij kl ik jl il jk ij klQ Q Q Q Q Q Q     [16].  
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Through some algebraic elimination process, we obtain the equations for F and H1 

as 

 
2

2 2

5 5 1 12
4 ,D F F D F H H

r r rt


    
   

   
           

 
2

2 2

5 1 5 1 1 52
.D H FD H H D F

t


 
   

 
       (1.17) 

If 0H  , that is,  1 0 0H r   on putting 2F Q  , we derive from last two 

equations, the single equation 

2
2 2

5 52
2D Q Q D Q

r rt


   
   

  
 

This is Chandrasekhar's equation of helicity-free isotropic turbulent flow. 

 

5. Smirnov’s Method of Solution 
 

For the sake of convenience, we introduce the longitudinal correlation function 

 
2

,
F

f r t
u

   and the correlation function   1

2
,

H
h r t

u
  for helicity and writing 

2u  , we obtain from the last two equations (1.17), 

 

2
2 2

5 52

2
2 2

5 5 52

4   and
h

D f f D f h
r r rt

D h f D h h D f
t

 

 

     
     

     

 
   

 

      (1.18) 

We take power series for f  and h  as 

 

 

2 2

, 0,0

0 0

2 2

, 0,0

0 0

, 1 and

, 1

i k

i k

i k

i k

i k

i k

f a r t a

h b r t b

 

 

 

 

 

 




        (1.19) 

Substituting last two power series for f and h in the last two equations, we find 

  
    

  

2

, 1 2,

, 1, , ,

1 0 1 0

1
2 1 2 2 5 2 7

1 2 1

1 2 5 2

i k i k

i k i k

i p k q p q i p k q p q

p q p q

a i i i i i a
i k k

p p p a a pb b





 

    

   

      

 
     

 
 

   (1.20) 

where 0, 0.i k   
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  
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   
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1
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 
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
    
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    (1.21) 

Now, if ,0 0,1,2,3,...ia i  are known, then ,i ka  can be determined from equation 

(1.20). If ,0 0,1,2,3,...ib i  are known, then ,i kb  can be determined from equation 

(1.21). 

 

6. Millionschkikov’s Hypothesis 
 

The dynamic equation due to von Karman–Howarth [26] is given by 

 
 

 

3
22

2 4 4

4 4
2

u u f
u f r r

t r r rr r
 

    
    

    
                        (1.22) 

Among many measurements the one by Stewart [24] measured each term of 

equation (1.22) supported that it is satisfied within the limits of experimental errors. 

From (1.22) we can find 

     
3

22 4 2 4 2 4

0
00

2
f
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       (1.23) 

Now, if  4lim 0
r

r k r


  and 4lim 0
r

f
r

r





 we obtain   2 4

0

0u r f r dr
t





 

  

and accordingly,   2 4

c

u r f r dr



   where   is constant.     (1.24) 

The above equation (1.24) is known as Loitsianskii’s integral invariant [13]. In the 

final period decay, 0
u l

v
  and the non-linear term becomes unimportant, as we may 

put   0k r   and then equation (1.22) reduces to 

4

4

2f f
r

t r rr

   
  

   
         (1.25) 

and we have the solution         
2

, exp
8

r
f r t

t

 
  

 
      

Substitution of this result into equation (1.24) we obtain     
5

2
248 2 t u    

from which we see that during the late stages of decay   
5

2 2u t


 . 

 

Let us consider the equation for the double correlation of fluctuating pressures at 

points A and B in homogeneous and isotropic turbulence as [14] 
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Under isotropic conditions, we may write   
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It can be derived now   
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1
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Now,  , ,p pQ r t  is assumed to decrease rapidly to zero with the indefinite increase 

of r, as such for any value of n, we have   ,lim , 0
n

p pnr

d
rQ r t

dr
     

Finally,  , ,p pQ r t  can be calculated from  ,M r t  by a single integration process, 

as 
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Q r t dr r r M r t
r
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At this stage, we make the simplifying assumption due to Millionschikov [16] e.g., 

about the quadruple correlation    i j k l BA
u u u u  that the joint probability 

distribution of turbulent velocities is normal. In effect, we have the relation 

               

                   , , , , , ,0 0

i j k l i j i j i k j lB A B BA A A A

i l j k i j k l i k j l i l j kA B BA
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u u u u Q Q Q r Q r Q r Q r

    

    
  

Physically, the hypothesis is explained, as Hinze [8]. Though the probability density 

of turbulent velocity may be Gaussian, the joint probability density cannot be 

Gaussian since a zero value of fourth-order cumulant would lead to non positive 

parts of the energy spectrum.  

 

Remarks 
 

i) Millionschikov’s quasi-normality hypothesis is very useful for closure of 

homogeneous and isotropic turbulence as such a hypothesis has been proved 

to be valid within the limits of experimental errors. 

ii) To gain more insight into the closure problems of turbulence, data from 

recent and advanced level measurements are to be brought into account in 

developing the appropriate models. 

iii) As and when necessary, modification of this hypothesis is welcomed, as 

Ogura [19] has pointed that tentatively, the errors that arise from finite 

difference approximations in numerical integration of the main equation of 

turbulence are not responsible for the generation of the negative energy 

spectrum but are the consequences of the quasi-normality hypothesis itself. 
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iv) Third-order moments of the velocity field should not be assumed zero and 

it should be considered into the calculation even at the initial evolution of 

spectral energy of turbulence. 
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