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Abstract 

This article introduces the Negative Binomial-Lindley (NB-L) Model, a novel 

framework addressing over-dispersed count data with excess zeros. The NB-L 

distribution enhances flexibility in modeling complex count structures. Parameter 

estimation employs the Bayesian hierarchical framework with Markov Chain 

Monte Carlo (MCMC) simulations, overcoming limitations of traditional models in 

capturing intricate data patterns.Empirical validation using two real-world 

datasets—one with prominent zero inflation—shows the NB-L generalized linear  
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model (GLM) outperforms Poisson and Negative Binomial (NB) models in 

accuracy and robustness for datasets with high zero frequencies and long-tailed                 

distributions. These results establish the NB-L model as the powerful tool for 

analyzing challenging count data across disciplines. 

 

Keywords: negative binomial-Lindley distribution;over-dispersion; MCMC; 

bayesian inference; regression analysis  

 

1. Introduction 

Count data analysis serves as a cornerstone of statistical modeling across diverse 

scientific domains, including economics, epidemiology, public health, and social 

sciences [1]. Such data—characterized by negative integer outcomes representing 

event frequencies—often exhibit complex structures that challenge conventional 

statistical frameworks[2]. As highlighted by [3], the unique nature of count data 

necessitates specialized modeling techniques to accurately capture phenomena such 

as over-dispersion (variance exceeding mean), excess zeros, or temporal/spatial 

dependencies. 

In economic research, for instance, count models are pivotal for analyzing firm 

innovation outputs or financial market event, where over-dispersion frequently 

arises from heterogeneous firm capabilities or market volatility[4]. In epidemiology, 

these models play a critical role in quantifying disease incidence rates while 

accounting for zero-inflated datasets—such as non-reporting of mild infections or 

sampling biases in health surveys[5]. Social science studies, meanwhile, leverage  
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count data modeling to investigate behavioral outcomes like criminal incidents or 

educational participation, where structural zeros and unobserved heterogeneity 

complicate inference [6]. 

The foundational challenge in count data analysis lies in balancing model 

flexibility with theoretical rigor. Traditional approaches, such as the Poisson Model, 

assume equidispersion (variance = mean) and often fail to accommodate real-world 

data complexities[7]. This limitation has spurred the development of advanced 

frameworks, including the Negative Binomial model for over-dispersed data and 

zero-inflated models for excess zerosb by[8]. However, even these extensions face 

constraints when addressing datasets with both pronounced over-dispersion and 

non-trivial zero proportions, motivating the need for more nuanced modeling 

strategies. 

Against this backdrop, the present study contributes to the methodological 

frontier by introducing the Negative Binomial-Lindley GLM. By integrating the 

Lindley distribution—a flexible discrete distribution with heavy-tailed properties—

into the Negative Binomial framework, the proposed model aims to enhance 

representation of count data with complex zero-inflation patterns and long-tailed 

frequency distributions[9]. Through a Bayesian hierarchical estimation approach 

using Markov Chain Monte Carlo (MCMC) simulations[10], this research seeks to 

demonstrate the NB-L model’s superior performance in capturing intricate data 

structures compared to conventional count models[11]. 
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2. Negative Binomial-Lindley Distribution Model 

In this section, we introduce a novel hybrid modeling framework: the Negative 

Binomial-Lindley (NB-L) distribution. This innovative distribution is formulated 

by compounding the Negative Binomial (NB) distribution with the Lindley 

distribution. The resultant NB-L model is specifically engineered to provide a 

flexible and robust framework for analyzing count data, particularly for 

concurrently addressing two prevalent and challenging characteristics:  

(ii)  a high incidence of zero observations (often termed 'excess zeros'), 

(ii) significant over-dispersion, which frequently manifests as long-tailed 

empirical distributions. 

Firstly, we introduce the NB random variable as follows: 

2.1 The Negative Binomial Distribution  

It is worth noting that the NB distribution presents two classic parametric 

forms: the first one originates from the Poisson-Beta mixture process, and the 

second one comes from the limit form of a series of independent Bernoulli trials. 

Based on the mathematical derivation of the latter parameterization, its PMF can be 

expressed as: 
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Given the prevalence of excessive zero-event occurrences and the observed 

marked heterogeneity in data distribution characterized by pronounced 

overdispersion, we implement a reparameterization strategy that expresses 

probability p as a function of the dispersion parameter r and is given as: 
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2.2 Generalized Linear Model 

Within the framework of negative binomial generalized linear models (NB GLM), 

the conditional mean is modeled as a nonlinear function of the explanatory variables, 

with the expected value of the response variable linked to the covariates via a log 

link function, thereby expressing the systematic component as: 

 0 1 1( ) ln( )i i i p ipg x x        
 (4) 

The conditional expectation  𝜇 = 𝐸(𝑌) is connected to the linear predictor 

through a log-link function, thereby establishing the generalized linear model 

(GLM) framework as： 

 0 1( ) ( 1 ) ( )|T

i i j i p i iE Y exp x x x p exp x             (5) 

where 𝜇𝑖  the linear predictor, 𝑥𝑖𝑝 represents the vector of covariates, 𝛽𝑗 

corresponds to regression coefficients. 
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Based on the mathematical derivation framework from Eqs.(1) and (3), the pmf 

of the negative binomial distribution can be re-parameterized as a Poisson-Gamma 

mixture model. Based on (4),the PMF of the variables becomes  
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2.3 Lindley distribution 

The GL distribution is a continuous probability density function defined by 

parameters a and b. The random variable is modeled using the Lindley distribution, 

which was initially proposed by Lindley (1958) and is a single-parameter 

distribution. It can be interpreted as a mixture of the exponential distribution and 

the gamma distribution. When a = 1 and b = 2, this function precisely corresponds 

to the standard Lindley distribution. The PMF of the distribution is defined as 

follows: 
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where 𝜃 denotes the scale parameter. This structural configuration endows the 

Lindley distribution with distinctive heavy-tailed characteristics, demonstrating 

superior performance in modeling stochastic phenomena exhibiting right-skewed 

patterns compared to conventional exponential distributions [12]. 

The MGF of 𝜆 can be obtained by calculation as 
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In addition, the first and second moments of the lindley distribution are as follows: 
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The integration of NB and Lindley distributions within a mixture framework 

enables the establishment of a GLM structure. The derivation of the NB-L GLM 

Model is as follows: 
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where parameter 𝜆 is used as the parameter of Lindley distribution in the PDF of 

Eq.(7). Based on Eq.(1), (2) and (6), The pmf of the NB-L GLM distribution can 

be defined as follows: 
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where 𝑦𝑖 = 0,1,2, … , 𝜇𝑖 > 0, 𝑖 = 1,2, … , 𝑛  and the positive parameters 𝑟, 𝜃 .Its 

mean and variance are respectively: 

 
0

1

2
( ; , , ) ( ) ( )

( 2)
i i i i

i

E Y r E exp X
 

    
 


  


  (11) 

 
2 2 21

( ; , , ) ( ; , , ) ( ) ( ; , , )i i i i i i i

r
Var Y r E Y r E E Y r

r
       


    (12) 

By integrating prior knowledge with observational data, the Bayesian framework  
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not only can cope with highly uncertain situations, but also can dynamically update 

parameter estimation when new information is introduced. Thus, it demonstrates 

strong applicability in the modeling and analysis of complex systems [13]. 

Let 𝛺 = (𝑟, 𝜃, 𝛽)𝑇  be the vector of the regression parameter. The likelihood 

function of 𝛺 is 
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3. Bayesian Inference for NB-L GLM Model 

3.1 Prior distributions and joint posterior density 

This method adopts the Bayesian statistical framework, which systematically 

integrates prior information through the setting of probability distributions and 

takes all unknown parameters into account.Assuming that the parameters 𝑟, 𝜃of the 

NB-L GLM follow gamma distribution, while 𝛽 follow normal distribution, and 

all parameters are independent of each other. Then the joint prior distribution of the 

unknown parameters are as following 

 0~ ( , ), ~ ( , ), ~ ( , )r

rr gamma z gamma z N v

       (14) 

where both 𝛼𝑟 , 𝑧𝑟 , 𝛼𝜃, 𝑧𝜃 are known positive parameters, 𝑣0 is a hyperparameter 

vector, and is a (k + 1)order known non-negative specific matrix. Assuming that 

each parameter conforms to the condition of independent and identically distributed, 

that is, the joint prior distribution of all unknown parameters are as following: 
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According to Bayes theorem, the posterior distribution is determined by 

multiplying the likelihood function by the prior distribution. The posterior 

distribution obtained is 

 ( | ) ( | , ) ( ) ( ) ( )X L y X r         (15) 

For this complex model, the parameters of each component can be calculated. 

The complete posterior distributions of the parameters of 𝛺derived are all obtained 
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3.2 Model evaluation 

Based on the Bayesian framework, we adopt the MCMC method to conduct 

posterior inference on the model parameters. The observed values follow the NB 

distribution, and the site-specific fragility terms follow a gamma prior distribution. 

The MCMC method transforms the complex high-dimensional posterior 

distribution sampling problem into a simple conditional distribution sampling 

problem, constructing a Markov chain with the stationary distribution as the target 

posterior distribution. It demonstrates significant advantages in high-dimensional 

integration and estimation problems. 

This part adopts the Gibbs sampling technique by decomposing the joint update 

of high-dimensional parameters into the successive updates of individual parameter. 

In the specific implementation, we generated three parallel independent MCMC 

chains, each of which conducted 30,000 iterations and discarded the first 15,000  
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iterations as the aging period to ensure convergence and calculated the expected 

posterior values of the parameters to achieve a robust estimation of the target 

posterior distribution. 

In the model selection analysis, this study adopts three core evaluation indicators: 

deviance, DIC, and the number of effective parameters (𝑝𝐷). Among them, DIC is 

a generalized extension form of AIC and BIC , and has become a standardized tool 

for evaluating the goodness of fit of Bayesian model. 

It is particularly suitable for model comparison studies based on posterior 

distributions obtained through MCMC simulation 

4. Empirical applications 

4.1 Data description 

The dataset used can be freely accessed through the Ecdat package of R language 

[14].The dataset used in this study is derived from the pioneering work of [15], and 

it can be freely obtained through the R language econometrics analysis package 

Ecdat. The descriptive summary of the variables given in Table 1 indicates that the 

zero proportion of the response variable (defined as the number of strikes) is 4.63%, 

the expected value of the "strikes" column is 5.24, the variance is 13.94, and there 

is an issue of over-dispersion. The dispersion index is 2.685. 

Table 1 Descriptive Overview of Strike Data Variables (n = 108). 

 

Variables Min Median Max Average (std. dev) 

strikes 0 5 18 5.24（3.75） 

output -0.13996 -0.00013 0.08554 -0.003（0.05456） 
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4.2 Bayesian inference for the NB-L GLM Distribution 

In this section, we present the analysis results of the NB-L GLM distribution and 

its Model. 

 

Figure 1 The bar chart plots of observed frequency and expected frequencies 

of each distributions. 

 

We evaluated the fitting performance of the NB-L GLM distribution for the 

datasets and compared it with the NB distribution and NB-L GLM distribution. The 

parameters of each distribution were estimated using Bayesian inference in order to 

assess the goodness of fit, we employed the KS test [16], Deviance, and DIC. The 

distribution that provided the best fit was identified by minimizing the KS statistic, 

Deviance, and DIC values. 
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The results for the "Strikes" dataset in Table 3 show that both the NB 

distribution and the NB-L GLM distribution fit the data well. While the NB-L GLM 

distribution shows slightly higher values in the KS test, Deviance, and DIC, these 

values are closely aligned with those of the NB distribution's KS statistic. Therefore, 

the NB-L GLM distribution is a suitable model for this dataset, yielding a fit 

comparable to that of the NB distribution. 

 

 

Figure 2 Density plots of the three MCMC chains for 𝑟, 𝜃, and 𝜷 = (𝛽1, 𝛽2)𝑇 

from the Possion model and NB model for the strikes data. 

 

Additionally, to enhance the fitting effect, the NB-L GLM distribution needs 

to be adjusted by incorporating the mean of the GL distribution as per Eq.(8). 
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Table 2 Posterior Distribution Summaries for NB, NB-L GLM, and NB-L 

GLM distribution for Strike Data. 

 Possion NB NB-L 

Parameter Mean(s.e.) 95%Cr.I. Mean(s.e.) 95%Cr.I. Mean(s.e.) 95%Cr.I. 

𝑝 0.36(0.05) (0.26,0.48) — —- — —- 

𝑟
 

3.05(0.71) (1.91,4.67) 25.92(6.02) (15.98,39.19) 31.28(5.57) (21.42,43.27) 

𝜃
 

— —- 6.56(1.31) (4.33,9.55) 7.89(2.04) (5.55,10.78) 

Deviance 568.56 563.27 520.77 

DIC 570.53 557.59 550.25 

KS 0.1574 0.1966 0.1957 

𝑝𝑑 0.6587 0.6787 0.6773 

 

Figure 3 Density plots of the three MCMC chains for 𝑟, 𝜃, and 𝜷 = (𝛽1, 𝛽2)𝑇 

from the NB model for the strikes data. 



 

 

166                    Cenyu Hu, Fang Ling, Xianming Shi and Yalong Wang 

 

Applying the Bayesian method, monitoring and reporting the convergence of 

the algorithm is a key aspect for ensuring the reliability of the results. We utilize 

trace plots and posterior density plots to analyze the sampling distribution of 

parameter values, in order to examine the stationarity and convergence of the 

MCMC chain. These plots visually reflect the stability of the model during the 

sampling process, thereby ensuring the accuracy of the inference results.  

Figure 4 Trace plots of the three MCMC chains for 𝑟, 𝜃 , and 𝜷 =

(𝛽0, ⋯ , 𝛽5)𝑇 from the Possion model and NB model for the data. 

 

Figures 2 and 3 respectively illustrate the posterior density distributions of all 

parameters of the Poisson, NB, and NB-L models. From the results, it can be seen 

that after the burning period, the posterior densities of the three parallel chains 

achieved a high degree of overlap, indicating that the posterior distribution samples 

of the parameter estimation have good representativeness and consistency.  
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At the same time, the trajectory graphs in Figures 4 and 5 show the changing 

trends of all parameters in the sampling sequence, and the distribution of the 

simulated parameter values is dense and close to vertical, further verifying the 

convergence and sampling stability of the model.parameter distribution. 

Figure 5 Trace plots of the three MCMC chains for 𝑟, 𝜃 , and 𝜷 =

(𝛽0, ⋯ , 𝛽5)𝑇 from the NB-L model for the data. 

 

To verify the applicability of the NB-L GLM model, we further evaluated the 

model performance by analyzing residual density plots. These residual density plots 

include posterior density plots and trace plots, which are used to check the quality 

of posterior distribution samples and the convergence of the model. The posterior  
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density plot can intuitively display the characteristics of parameter distributions,  

while the trace plot reflects the stability and consistency of the sampling process. 

 

Figure 6 Residual density comparison plots 

 

The Residual density plots analysis demonstrates that the NB-L exhibits 

exceptional performance in fitting the dataset, outperforming both the Possion and 

standard NB models. The NB-L model not only addresses zero-inflation and 

overdispersion effectively but also ensures robust parameter estimation and 

superior fit. These advantages highlight the model's substantial value and its 

potential for widespread application in the analysis of complex count data. 

Moreover, the absence of any discernible trends or patterns in the cumulative 

residuals further supports the model's validity, suggesting that no significant 

misspecification issues exist. This reinforces the model's overall effectiveness and 

its ability to accurately represent the data. 

 



 

 

Bayesian inference for over-dispersed count data with excess zeros          169 

 

5. Conclusion 

This paper introduces a novel statistical distribution that combines lindley 

distribution with mixed negative binomial distribution to establish the NB-L 

framework. This innovative methodological integration significantly improves 

predictive accuracy in datasets characterized by zero-inflation.Notably, when 

datasets contain minimal zero values, the NB-L framework naturally converges to 

the NB model, ensuring that its worst-case performance remains equivalent to the 

NB approach. 

Empirical evidence across both examined datasets confirms the NB-L  

substantive improvement over alternative approaches, with deviation metrics and 

DIC values establishing a clear hierarchy of model effectiveness: NB-L 

demonstrating superior performance, followed by NB and conventional Possion 

frameworks. In summary, The NB-L model preserves the fundamental properties 

of traditional negative binomial approaches while significantly enhancing 

adaptability to both overdispersion and zero-inflation phenomena. 
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