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Abstract

This article introduces the Negative Binomial-Lindley (NB-L) Model, a novel
framework addressing over-dispersed count data with excess zeros. The NB-L
distribution enhances flexibility in modeling complex count structures. Parameter
estimation employs the Bayesian hierarchical framework with Markov Chain
Monte Carlo (MCMC) simulations, overcoming limitations of traditional models in
capturing intricate data patterns.Empirical validation using two real-world

datasets—one with prominent zero inflation—shows the NB-L generalized linear
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model (GLM) outperforms Poisson and Negative Binomial (NB) models in
accuracy and robustness for datasets with high zero frequencies and long-tailed
distributions. These results establish the NB-L model as the powerful tool for

analyzing challenging count data across disciplines.

Keywords: negative binomial-Lindley distribution;over-dispersion; MCMC,;

bayesian inference; regression analysis

1. Introduction

Count data analysis serves as a cornerstone of statistical modeling across diverse
scientific domains, including economics, epidemiology, public health, and social
sciences [1]. Such data—characterized by negative integer outcomes representing
event frequencies—often exhibit complex structures that challenge conventional
statistical frameworks[2]. As highlighted by [3], the unique nature of count data
necessitates specialized modeling techniques to accurately capture phenomena such
as over-dispersion (variance exceeding mean), excess zeros, or temporal/spatial

dependencies.

In economic research, for instance, count models are pivotal for analyzing firm
innovation outputs or financial market event, where over-dispersion frequently
arises from heterogeneous firm capabilities or market volatility[4]. In epidemiology,
these models play a critical role in quantifying disease incidence rates while
accounting for zero-inflated datasets—such as non-reporting of mild infections or

sampling biases in health surveys[5]. Social science studies, meanwhile, leverage
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count data modeling to investigate behavioral outcomes like criminal incidents or
educational participation, where structural zeros and unobserved heterogeneity

complicate inference [6].

The foundational challenge in count data analysis lies in balancing model
flexibility with theoretical rigor. Traditional approaches, such as the Poisson Model,
assume equidispersion (variance = mean) and often fail to accommodate real-world
data complexities[7]. This limitation has spurred the development of advanced
frameworks, including the Negative Binomial model for over-dispersed data and
zero-inflated models for excess zerosb by[8]. However, even these extensions face
constraints when addressing datasets with both pronounced over-dispersion and
non-trivial zero proportions, motivating the need for more nuanced modeling

strategies.

Against this backdrop, the present study contributes to the methodological
frontier by introducing the Negative Binomial-Lindley GLM. By integrating the
Lindley distribution—a flexible discrete distribution with heavy-tailed properties—
into the Negative Binomial framework, the proposed model aims to enhance
representation of count data with complex zero-inflation patterns and long-tailed
frequency distributions[9]. Through a Bayesian hierarchical estimation approach
using Markov Chain Monte Carlo (MCMC) simulations[10], this research seeks to
demonstrate the NB-L model’s superior performance in capturing intricate data

structures compared to conventional count models[11].



156 Cenyu Hu, Fang Ling, Xianming Shi and Yalong Wang

2. Negative Binomial-Lindley Distribution Model

In this section, we introduce a novel hybrid modeling framework: the Negative
Binomial-Lindley (NB-L) distribution. This innovative distribution is formulated
by compounding the Negative Binomial (NB) distribution with the Lindley
distribution. The resultant NB-L model is specifically engineered to provide a
flexible and robust framework for analyzing count data, particularly for

concurrently addressing two prevalent and challenging characteristics:
(it) a high incidence of zero observations (often termed 'excess zeros'),

(if) significant over-dispersion, which frequently manifests as long-tailed

empirical distributions.
Firstly, we introduce the NB random variable as follows:

2.1 The Negative Binomial Distribution

It is worth noting that the NB distribution presents two classic parametric
forms: the first one originates from the Poisson-Beta mixture process, and the
second one comes from the limit form of a series of independent Bernoulli trials.
Based on the mathematical derivation of the latter parameterization, its PMF can be

expressed as:

PY=Yy)= ry(!izrr)) (p) (1-p) (1)

where r>0and0< p <1.Its mean and variance are respectively
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E(v) =8P andvar(y) = TEP) 2)

P p
Given the prevalence of excessive zero-event occurrences and the observed
marked heterogeneity in data distribution characterized by pronounced
overdispersion, we implement a reparameterization strategy that expresses

probability p as a function of the dispersion parameter r and is given as:

p= 3)

u+r

2.2 Generalized Linear Model

Within the framework of negative binomial generalized linear models (NB GLM),
the conditional mean is modeled as a nonlinear function of the explanatory variables,
with the expected value of the response variable linked to the covariates via a log

link function, thereby expressing the systematic component as:
9(e4) =In(g) = By + BXa ++++ B X, (4)

The conditional expectation 4 = E(Y) is connected to the linear predictor
through a log-link function, thereby establishing the generalized linear model

(GLM) framework as:
E(Y) = =exp(B, + BxL+--+ BX +---+ B X p) =exp(X | B) (5)

where p; the linear predictor, x;, represents the vector of covariates, p;

corresponds to regression coefficients.
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Based on the mathematical derivation framework from Egs.(1) and (3), the pmf
of the negative binomial distribution can be re-parameterized as a Poisson-Gamma

mixture model. Based on (4),the PMF of the variables becomes

_ 1"(BI.H)I ( (1™ ﬂ)) r "da
W= T(r) ¥ "(1e™ ﬁ’+r) /Ie(xiT A yr

(6)

2.3 Lindley distribution

The GL distribution is a continuous probability density function defined by
parameters a and b. The random variable is modeled using the Lindley distribution,
which was initially proposed by Lindley (1958) and is a single-parameter
distribution. It can be interpreted as a mixture of the exponential distribution and
the gamma distribution. When a = 1 and b = 2, this function precisely corresponds
to the standard Lindley distribution. The PMF of the distribution is defined as

follows:

(1+ 1) 6 o)
f(1;,0)=—"—— 7
(4;0) = 10 (7)
where 6 denotes the scale parameter. This structural configuration endows the
Lindley distribution with distinctive heavy-tailed characteristics, demonstrating
superior performance in modeling stochastic phenomena exhibiting right-skewed

patterns compared to conventional exponential distributions [12].

The MGF of A can be obtained by calculation as
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SO\ tiq_ 02 !
M. (0) =Ele"]= L+6)(O-t) L (6-1)

)it>0 (8)

In addition, the first and second moments of the lindley distribution are as follows:

1 2 -
E(i):m(l'FE), and E((9 )—

(3+26)

(0*(1+0)) ®)

The integration of NB and Lindley distributions within a mixture framework
enables the establishment of a GLM structure. The derivation of the NB-L GLM

Model is as follows:
f(y;,1,6) :j: NB(y,;r, Az )lindley(1; 6)d A

where parameter A is used as the parameter of Lindley distribution in the PDF of
Eq.(7). Based on Eq.(1), (2) and (6), The pmf of the NB-L GLM distribution can

be defined as follows:

o (XiTﬂ) ) o
i, 0) =— ) e e D) g T e da (10)

yi T(NA+60) “(2e™ P 4r)” “2e™ 4
where y; =0,1,2,...,u; > 0,i = 1,2,...,n and the positive parameters r,8.lts

mean and variance are respectively:

_ s 6+2
E(Yi,,ui,r,e)=yiE(/1)=exp(ﬁ0+ZXi)M (11)

Lrr

Var(Y;; 1,1, 0) = E(Y;; £4,7,0) + 14°E(2°) —E*(Y; 44,7,6) (12)

By integrating prior knowledge with observational data, the Bayesian framework
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not only can cope with highly uncertain situations, but also can dynamically update
parameter estimation when new information is introduced. Thus, it demonstrates

strong applicability in the modeling and analysis of complex systems [13].

Let 2 = (r,6,8)T be the vector of the regression parameter. The likelihood
function of 2 is
r 2 A)

)'(

T
Bar” 2% A 4y

L(Ql Y, XT) :Hn (F(Y. + I‘)HZ) J‘w( _ )yi (1+ﬂ)e(—91)dﬂ (13)
VI

7y 0L+ 0)

3. Bayesian Inference for NB-L GLM Model

3.1 Prior distributions and joint posterior density

This method adopts the Bayesian statistical framework, which systematically
integrates prior information through the setting of probability distributions and
takes all unknown parameters into account.Assuming that the parameters r, 6of the
NB-L GLM follow gamma distribution, while g follow normal distribution, and
all parameters are independent of each other. Then the joint prior distribution of the

unknown parameters are as following
r ~ gamma(e,,z'),6 ~ gamma(a,,z°), B ~ N(v,,0,) (14)

where both «,, z,, ag, zg are known positive parameters, v, is a hyperparameter
vector, and is a (k + 1)order known non-negative specific matrix. Assuming that
each parameter conforms to the condition of independent and identically distributed,

that is, the joint prior distribution of all unknown parameters are as following:
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According to Bayes theorem, the posterior distribution is determined by
multiplying the likelihood function by the prior distribution. The posterior

distribution obtained is

7(Q X) oc L(Q] Y, X)72(r) 2(6) () (15)

For this complex model, the parameters of each component can be calculated.

The complete posterior distributions of the parameters of 2derived are all obtained

z(r|y, X,0,r)c L(Q]y, X)z(r)
7@y, X,0,r)«c L(Q]Y, X)7z(6) (16)
7(BlYy, X,0,r)c L(Q]Y, X)7z(B)

3.2 Model evaluation

Based on the Bayesian framework, we adopt the MCMC method to conduct
posterior inference on the model parameters. The observed values follow the NB

distribution, and the site-specific fragility terms follow a gamma prior distribution.

The MCMC method transforms the complex high-dimensional posterior
distribution sampling problem into a simple conditional distribution sampling
problem, constructing a Markov chain with the stationary distribution as the target
posterior distribution. It demonstrates significant advantages in high-dimensional

integration and estimation problems.

This part adopts the Gibbs sampling technique by decomposing the joint update
of high-dimensional parameters into the successive updates of individual parameter.
In the specific implementation, we generated three parallel independent MCMC

chains, each of which conducted 30,000 iterations and discarded the first 15,000
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iterations as the aging period to ensure convergence and calculated the expected
posterior values of the parameters to achieve a robust estimation of the target

posterior distribution.

In the model selection analysis, this study adopts three core evaluation indicators:
deviance, DIC, and the number of effective parameters (pp). Among them, DIC is
a generalized extension form of AIC and BIC , and has become a standardized tool

for evaluating the goodness of fit of Bayesian model.

It is particularly suitable for model comparison studies based on posterior

distributions obtained through MCMC simulation

4. Empirical applications

4.1 Data description

The dataset used can be freely accessed through the Ecdat package of R language
[14].The dataset used in this study is derived from the pioneering work of [15], and
it can be freely obtained through the R language econometrics analysis package
Ecdat. The descriptive summary of the variables given in Table 1 indicates that the
zero proportion of the response variable (defined as the number of strikes) is 4.63%,
the expected value of the "strikes™ column is 5.24, the variance is 13.94, and there

is an issue of over-dispersion. The dispersion index is 2.685.

Table 1 Descriptive Overview of Strike Data Variables (n = 108).

Variables Min Median Max Average (std. dev)
strikes 0 5 18 5.24 (3.75)
output -0.13996 -0.00013 0.08554 -0.003(0.05456)
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4.2 Bayesian inference for the NB-L GLM Distribution

In this section, we present the analysis results of the NB-L GLM distribution and

its Model.

Observed vs Predicted Frequencies for Poisson, NB, and NB_L

Type & Model

gansty
3
.

..

Counts

Figure 1 The bar chart plots of observed frequency and expected frequencies

of each distributions.

We evaluated the fitting performance of the NB-L GLM distribution for the
datasets and compared it with the NB distribution and NB-L GLM distribution. The
parameters of each distribution were estimated using Bayesian inference in order to
assess the goodness of fit, we employed the KS test [16], Deviance, and DIC. The
distribution that provided the best fit was identified by minimizing the KS statistic,

Deviance, and DIC values.
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The results for the "Strikes" dataset in Table 3 show that both the NB
distribution and the NB-L GLM distribution fit the data well. While the NB-L GLM
distribution shows slightly higher values in the KS test, Deviance, and DIC, these
values are closely aligned with those of the NB distribution's KS statistic. Therefore,

the NB-L GLM distribution is a suitable model for this dataset, yielding a fit

comparable to that of the NB distribution.

NE Density Fioss

Posson Denaity Plots
- - [

Figure 2 Density plots of the three MCMC chains for 7,8,and B = (B, 52)"

from the Possion model and NB model for the strikes data.

Additionally, to enhance the fitting effect, the NB-L GLM distribution needs

to be adjusted by incorporating the mean of the GL distribution as per Eq.(8).
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Table 2 Posterior Distribution Summaries for NB, NB-L GLM, and NB-L
GLM distribution for Strike Data.

Possion NB NB-L
Parameter Mean(s.e.) 95%Cr.l. Mean(s.e.) 95%Cr.l. Mean(s.e.) 95%Cr.l.
P 0.36(0.05) (0.26,0.48) — — — —

r 3.05(0.71)  (1.91,467)  2592(6.02)  (15.98,39.19)  31.28(557)  (21.42,43.27)

6 — — 6.56(1.31) (4.33,9.55) 7.89(2.04) (5.55,10.78)
Deviance 568.56 563.27 520.77
DIC 570.53 557.59 550.25
KS 0.1574 0.1966 0.1957
Pa 0.6587 0.6787 0.6773

Figure 3 Density plots of the three MCMC chains for r,0,and B = (B, 2)"

from the NB model for the strikes data.
NB_L Density Plots
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Applying the Bayesian method, monitoring and reporting the convergence of
the algorithm is a key aspect for ensuring the reliability of the results. We utilize
trace plots and posterior density plots to analyze the sampling distribution of
parameter values, in order to examine the stationarity and convergence of the
MCMC chain. These plots visually reflect the stability of the model during the

sampling process, thereby ensuring the accuracy of the inference results.
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Figure 4 Trace plots of the three MCMC chains for r,0, and B =

(Bo,+++, Bs)T from the Possion model and NB model for the data.

Figures 2 and 3 respectively illustrate the posterior density distributions of all
parameters of the Poisson, NB, and NB-L models. From the results, it can be seen
that after the burning period, the posterior densities of the three parallel chains
achieved a high degree of overlap, indicating that the posterior distribution samples

of the parameter estimation have good representativeness and consistency.
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At the same time, the trajectory graphs in Figures 4 and 5 show the changing
trends of all parameters in the sampling sequence, and the distribution of the
simulated parameter values is dense and close to vertical, further verifying the

convergence and sampling stability of the model.parameter distribution.

NB_L Trace Plots

AR A |
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Figure 5 Trace plots of the three MCMC chains for r,6, and B =

(Bo, -+, Bs)T from the NB-L model for the data.

To verify the applicability of the NB-L GLM model, we further evaluated the
model performance by analyzing residual density plots. These residual density plots
include posterior density plots and trace plots, which are used to check the quality

of posterior distribution samples and the convergence of the model. The posterior
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density plot can intuitively display the characteristics of parameter distributions,

while the trace plot reflects the stability and consistency of the sampling process.

Residual Density Comparison (Polsson vs NB vs NB_L)

NE NB_L Poisson

Dansdy

Residuals (Observed - Pradicied)

Figure 6 Residual density comparison plots

The Residual density plots analysis demonstrates that the NB-L exhibits
exceptional performance in fitting the dataset, outperforming both the Possion and
standard NB models. The NB-L model not only addresses zero-inflation and
overdispersion effectively but also ensures robust parameter estimation and
superior fit. These advantages highlight the model's substantial value and its
potential for widespread application in the analysis of complex count data.
Moreover, the absence of any discernible trends or patterns in the cumulative
residuals further supports the model's validity, suggesting that no significant
misspecification issues exist. This reinforces the model's overall effectiveness and

its ability to accurately represent the data.
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5. Conclusion

This paper introduces a novel statistical distribution that combines lindley
distribution with mixed negative binomial distribution to establish the NB-L
framework. This innovative methodological integration significantly improves
predictive accuracy in datasets characterized by zero-inflation.Notably, when
datasets contain minimal zero values, the NB-L framework naturally converges to
the NB model, ensuring that its worst-case performance remains equivalent to the

NB approach.

Empirical evidence across both examined datasets confirms the NB-L
substantive improvement over alternative approaches, with deviation metrics and
DIC values establishing a clear hierarchy of model effectiveness: NB-L
demonstrating superior performance, followed by NB and conventional Possion
frameworks. In summary, The NB-L model preserves the fundamental properties
of traditional negative binomial approaches while significantly enhancing

adaptability to both overdispersion and zero-inflation phenomena.
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