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Abstract

The investment and consumption problem is an important branch of
portfolio theory, focusing on how to achieve a dynamic balance between
investment and consumption to optimize wealth and utility. Consid-
ering the significant impact that extreme scenarios may have on the
investment-consumption problem, this paper constructs an optimistic
value model under uncertain environments and provides an analytical
solution for the optimal investment strategy and consumption rate. Fur-
thermore, the paper explores how to adjust investment and consumption
behavior under bankruptcy constraints to maximize an objection func-
tion and provides numerical solutions. An empirical analysis ensures
that the proposed model and method are effective and realistic.
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1 Introduction

Investment is a key branch of finance, and portfolio theory is a popular re-
search topic within the discipline. Markowitz established modern portfolio
theory, while Sharpe [8] introduced the capital asset pricing model. Subse-
quent studies explored new investment criteria extended from single-cycle to
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multi-cycle frameworks. Merton [6] pioneered the study of multi-period dy-
namic portfolio selection problems and Bellman [1] proposed the stochastic
dynamic programming method. Bielecki et al. [2] established a bankruptcy
injunction that permits.

Due to emergencies, economic factors and technical limitations, we may
have little or no useful sample data available to estimate a distribution func-
tion. Based on this, Liu proposed the uncertainty theory [4]. Zhu [14] put
forward an uncertain optimal control problem and applied it to the portfolio
selection model. Yao & Chen [11] proposed to use α-path to find the numerical
solution of an uncertain differential equation. Sheng & Zhu [9] provided an ex-
plicit solution for optimistic value model by the uncertain optimal control. Qin
et al. [7] proposed different portfolio model. Liu [5] established the concept
of first hitting time, and then Yao [10] provided the uncertainty distribution
of the first hitting time through the alpha-path. Jin et al. [3] optimized the
objective function about the first hitting time.

This paper explores the optimal investment and consumption problem in
uncertain environments without or with bankruptcy constraint. The paper
is structured as follows: Section 2 recalls the key results in uncertain theory.
Section 3 develops optimal investment and consumption strategies, offering
both analytical and numerical solutions under unconstrained and bankruptcy
constraint. Section 4 applies the optimistic value model to real-world scenarios
to demonstrate its effectiveness. Finally, Section 5 concludes findings and
suggestions for future research.

2 Preliminary

This section recalls basic definitions and lemmas in uncertainty theory [4].

Definition 2.1. An uncertain process Ct is said to be a Liu process if (i)
C0 = 0 and almost all sample paths are Lipschitz continuous, (ii) Ct has
stationary and independent increments, (iii) every increment Cs+t − Cs is a
normal uncertain variable with expected value 0 and variance t2.

Definition 2.2. Assume that Ct is a Liu process, f and g are two contin-
uous functions. Then

dXt = f (t,Xt) dt+ g (t,Xt) dCt

is called an uncertain differential equation (UDE).

Definition 2.3. Assume that α ∈ (0, 1), an UDE like Definition 2.2 is
said to have an α-path Xα

t , if it solves the corresponding ordinary differential
equation

dXα
t = f (t,Xα

t ) dt+ |g (t,Xα
t ) |Φ−1 (α) dt,
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where Φ−1 (α) is the inverse standard normal uncertainty distribution, i.e.,

Φ−1 (α) =
√
3
π

ln α
1−α .

Definition 2.4. Let Xt be an uncertain process and z be a given level. Then
the uncertain variable

τz =

{
inf {t ≥ 0 | Xt ≥ z} , if z > X0,

inf {t ≥ 0 | Xt ≤ z} , if z < X0.

is called the first hitting time that Xt reaches the level z.

Lemma 2.5. Let Xt and Xα
t be the solution and α-path of the UDE like

Definition 2.2 with an initial value X0, respectively. Given a strictly increasing
function J (xt), the first hitting time τz that J (xt) reaches z value has an
uncertainty distribution

Ψ(s) =


1− inf

{
α ∈ (0, 1) | sup

0≤t≤s
J (Xα

t ) ≥ z

}
, if z > J (x0) ,

sup

{
α ∈ (0, 1) | inf

0≤t≤s
J (Xα

t ) ≤ z

}
, if z < J (x0) .

Consider an uncertain optimistic value optimal control problem
J(t, x) = sup

ut∈U
Fsup (α)

subject to

dXs = µ (s, us, Xs) dt+ σ (s, us, Xs) dCs, Xt = x,

(1)

where Fsup (α) is the β-optimistic value of uncertain variable F provided by

Fsup (α) = sup {r | M{F ≥ r} ≥ α} , α ∈ (0, 1).

Lemma 2.6. [9] For Problem (1), if J(t, x) is twice differentiable, then

−Jt(t, x) = sup
u∈U

{
f(t, ut, x) + Jx(t, x)µ(t, ut, x) +

√
3

π
ln

1− α
α
|Jx(t, x)σ(t, x, u)|

}
,

where Jt(t, x) and Jx(t, x) are the partial derivatives of the function J(t, x)
with respect to t and x, respectively.

3 Portfolio Model

In this section, we focus on the optimal portfolio strategy and optimal con-
sumption of investment and consumption problems. Assume that the investor
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allocates the wealth into a riskless asset and n risky assets with initial wealth
x0 in a interval [0, T ]. The riskless asset Bt at time t has a fixed rate r satis-
fying the following differential equation dBt = rBtdt. And the i-th risky asset
Sit at time t satisfies the UDE with draft coefficient µi and diffusion coefficient
σi, i.e. dSit = µiSitdt+σiSitdCt. Assume that consumption ct per unit of time
is the linear function of the total wealth Xt,

ct = ktXt, (2)

where kt ∈ (0, 1). The wealth Xt satisfies

dXt =dBt +
n∑
i=1

dSit − ctdt

=
n∑
i=1

(µi − r)ωiXtdt+ (r − kt)Xtdt+

(
n∑
i=1

ωiσiXt

)
dCt, X0 = x0,

(3)

where ωi is the proportion invested in the i-th risky asset, 1 −
n∑
i=1

ωi is the

proportion invested in the riskless asset.
In financial markets, investor’s returns and risks exhibit significant volatil-

ity, driven by dynamic economic conditions, market sentiment shifts and so
on. Given this inherent unpredictability, assuming that the investor accounts
for extreme scenarios, an optimistic value model can be constructed as follows:

J = max
kt,ωi

∫ T

0

e−bt

n∑
i=1

(ωiXt)
λ + (ktXt)

λ

λ
dt


sup

(α)

subject to

dXt =
n∑
i=1

(µi − r)ωiXtdt+ (r − kt)Xtdt+

(
n∑
i=1

ωiσiXt

)
dCt, X0 = x0,

(4)
where b > 0, λ ∈ (0, 1). According to Lemma 2.6, the extremum value satisfies

−Jt = max
kt,ωi

e−bt
n∑
i=1

(ωix)λ + (ktx)λ

λ
+ Jx

[
n∑
i=1

(µi − r)ωix+ (r − kt)x

]

+

√
3

π
ln

1− α
α

Jx

n∑
i=1

ωiσix

}
= max

kt,ωi
L (kt, ω1, · · · , ωn) . (5)
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Taking partial derivatives of the Lagrange function L (kt, ω1, · · · , ωn) in (5),
let the partial derivative equal to zero. The optimal solution ω∗i and k∗t can be
written as

k∗t =

(
Jxe

bt
) 1
λ−1

x
,

ω∗i =

[
Jxe

bt
(
r − µi −

√
3
π
σi ln

1−α
α

)] 1
λ−1

x
, i = 1, 2, · · · , n.

(6)

Assume that J(t, x) = kxλe−bt. Then

Jt = −kbxλe−bt, Jx = kλxλ−1e−bt. (7)

Substituting Eq.(6) and Eq.(7) into Eq.(5) yields

(kλ)
1

λ−1 =

(
b− rλ
1− λ

)
1

n∑
i=1

(
r − µi −

√
3
π
σi ln

1−α
α

) λ
λ−1

+ 1

. (8)

At the end, the optimal values k∗t and ω∗i are obtained as follows:

k∗t =

(
b− rλ
1− λ

)
1

n∑
i=1

(
r − µi −

√
3
π
σi ln

1−α
α

) λ
λ−1

+ 1

,

ω∗i =

(
b− rλ
1− λ

) (
r − µi −

√
3
π
σi ln

1−α
α

) 1
λ−1

n∑
i=1

(
r − µi −

√
3
π
σi ln

1−α
α

) λ
λ−1

+ 1

, i = 1, 2, · · · , n.

(9)

Incorporating bankruptcy constraints helps investors manage risks and
avoid financial crises while pursuing wealth growth. The first hitting time
(bankruptcy time) τz serves as a key constraint for evaluating bankruptcy. If
the wealth Xt drops to a certain level z, the investor is deemed bankrupt, i.e.
τz = inf {t ≥ 0 | Xt ≤ z}. For any t, if Xt ≥ z, then τz = +∞. As for the
time t ∈ [0, T ], if investors avoid bankruptcy, we have τz > T . Then, the risk
of bankruptcy can be restricted by following inequalityM{τz > T} ≥ β for a
suitable belief degree β. The distribution function of the bankruptcy time τz
can be given by the following theorem.

Theorem 3.1. Assume that the wealth Xt satisfies Eq.(3). When Xt reaches
a certain value z with z < x0, the distribution function of the bankruptcy time
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can be given by

U (s) =

exp

π

[
ln z
x0
−

n∑
i=1

(µi−r)ωis−(r−kt)s
]

√
3
n∑
i=1

ωiσis


1 + exp

π

[
ln z
x0
−

n∑
i=1

(µi−r)ωis−(r−kt)s
]

√
3
n∑
i=1

ωiσis


. (10)

Proof. From Definition 2.3, α-path Xα
t satisfies

Xα
t = x0 exp

{
n∑
i=1

(µi − r)ωit+ (r − kt) t+
n∑
i=1

ωiσitΦ
−1 (α)

}
= x0 exp {th} ,

(11)

where h =
n∑
i=1

(µi − r)ωi + (r − kt) +
n∑
i=1

ωiσiΦ
−1 (α). A suitable value α can

be selected in accordance with Lemma 2.5, such as meeting the requirement
that inf

0≤t≤s
Xα
t ≤ z. If h ≥ 0, then τz = +∞. For h < 0, we have

α0 = sup

{
α | inf

0≤t≤s
Xα
t ≤ z

}
= sup

{
α | inf

0≤t≤s
x0 exp

{
n∑
i=1

(µi − r)ωit+ (r − kt) t+
n∑
i=1

ωiσitΦ
−1 (α)

}
≤ z

}

= sup

{
α | inf

0≤t≤s
x0 exp

{
n∑
i=1

(µi − r)ωit+ (r − kt) t+

√
3

π
ln

α

1− α

n∑
i=1

ωiσit

}
≤ z

}

= sup

{
α | x0 exp

{
n∑
i=1

(µi − r)ωis+ (r − kt) s+

√
3

π
ln

α

1− α

n∑
i=1

ωiσis

}
≤ z

}

=

exp

π

(
ln z
x0
−

n∑
i=1

(µi−r)ωis−(r−kt)s
)

√
3
n∑
i=1

ωiσis


1 + exp

π

(
ln z
x0
−

n∑
i=1

(µi−r)ωis−(r−kt)s
)

√
3
n∑
i=1

ωiσis


.

According to Lemma 2.5, we have

U(s) =M{τz ≤ s} = α0.

The proof ends.
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Theorem 3.2. Assume that the wealth Xt satisfies Eq.(3). Then bankruptcy
constraint M{τz > T} ≥ β is equivalent to

π ln
z

x0
−
√

3 ln
1− β
β

n∑
i=1

ωiσiT − π
n∑
i=1

(µi − r)ωiT − π (r − kt)T ≤ 0. (12)

Proof. The conclusion follows from Theorem 3.1.

Denote the function in the left hand side of Eq.(12) as g(kt, ω1, · · · , ωn).
Another problem should be considered is as follows

J = max
kt,ωi

∫ T

0

e−bt

n∑
i=1

(ωiXt)
λ + (ktXt)

λ

λ
dt


sup

(α) ,

subject to

dXt =
n∑
i=1

(µi − r)ωiXtdt+ (r − kt)Xtdt+

(
n∑
i=1

ωiσiXt

)
dCt, X0 = x0,

g(kt, ω1, · · · , ωn) ≤ 0,

n∑
i=1

ωi − 1 ≤ 0,

−ωi ≤ 0,

−kt ≤ 0.
(13)

We consider setting a penalty function to find its numerical solution. Prob-
lem (13) with inequality constraints can be organized into the following opti-
mization problem without portfolio constraint,

max
kt,ωi

F (kt, ωi) =

∫ T

0

e−bt

n∑
i=1

(ωiXt)
λ + (ktXt)

λ

λ
dt


sup

(α)− φP (kt, ωi) , (14)

where Xt satisfies Eq.(3), weighting parameter φ is suitable large, and

P (kt, ωi) =
4∑
j=1

[max {0, gj(kt, ωi)}]2 ,

g1(kt, ωi) = g(kt, ωi, · · · , ωn), g2(kt, ωi) =
n∑
i=1

ωi−1, g3(kt, ωi) = −ωi, g4(kt, ωi) =

−kt. According to the definition of optimistic value, Eq.(14) can be rewritten
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as

max
kt,ωi

F (kt, ωi) =

∫ T

0

e−bt

n∑
i=1

(ωiX
1−α
t )λ +

(
ktX

1−α
t

)λ
λ

dt− φP (kt, ωi) , (15)

where Xα
t satisfies Eq.(11).

From the method of moment [12] and Definition 2.1, if the risky asset St
satisfies the uncertain differential equation, we have

Sti+1
− Sti − µSti(ti+1 − ti)
σSti(ti+1 − ti)

∼ N (0, 1) . (16)

The sample moments can provide estimates of the corresponding population
moments. Therefore,

µ =
1

n− 1

n−1∑
i=1

Sti+1
− Sti

Sti (ti+1 − ti)
,

σ =

√√√√ 1

n− 1

n−1∑
i=1

(
Sti+1

− Sti
Sti (ti+1 − ti)

)2

−

(
1

n− 1

n−1∑
i=1

Sti+1
− Sti

Sti (ti+1 − ti)

)2

.

(17)

Based on Eq.(16), the sample value zi =
sti+1−sti−µsti (ti+1−ti)

σsti (ti+1−ti) can be ob-

tained by the observed values st1 , st2 , · · · , stn . Then the uncertain hypothesis
test [13] is

H0 : µ = µ0 and σ = σ0 versus H1 : µ 6= µ0 or σ 6= σ0.

Given a significance level γ, the rejection domain is

W = {(z1, z2, . . . , zn−1) : there are at least α of indexes i ’s with 1 ≤ i ≤ n− 1

such that zi < Φ−1
(γ

2

)
or zi > Φ−1

(
1− γ

2

)}
,

where Φ−1 (γ) =
√
3
π

ln γ
1−γ is the inverse uncertainty distribution of N (0, 1).

If the vector (z1, z2, · · · , zn−1) /∈ W , then the estimated parameters µ and σ
pass the uncertain hypothesis test and then are well fitted.

Finally, the sequential least squares programming (SLSQP) method is used
to obtain the optimal value of Problem (15).

4 Empirical analysis

This section validates the practicality of the proposed model and the effective-
ness of the solution method. Using monthly closing prices from the Shanghai
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stock market (January 2020 to December 2023), five stocks (Codes: 002783,
603637, 000096, 600513, 002202) are selected, denoted as S1, S2, S3, S4, S5 are
selected, denoted as S1, S2, S3, S4, S5. Parameters µi and σi are estimated us-
ing moment estimation, with results shown in Table 1. All of the parameters

Table 1: Stock parameters µi and σi.
S1 S2 S3 S4 S5

µi 0.2633 0.1391 0.3279 0.1213 0.1197
σi 4.5340 4.7109 3.3927 4.7858 4.8785

in the Table 1 pass the uncertain hypothesis test.

Example 4.1. For the model (4), Let r = 0.02, b = 0.05, T = 1, x0 = 1,
λ = 0.5 and α = 0.8. Thus the optimal value can be calculated by Eq.(9),
with results shown in Table 2.

Table 2: The optimal investment proportions and consumption rate.
ω∗1 ω∗2 ω∗3 ω∗4 ω∗5 k∗t

model (4) 0.0036 0.0028 0.0109 0.0026 0.0250 0.1587

Without portfolio constraint, investors favor high-return assets despite the
high risks, driven by their pursuit of returns and macroeconomic factors like
low interest rates and inflation, which reduce the appeal of low-risk assets.

Example 4.2. As for the model (15), let z = 0.2, α = 0.8 and φ = 100.
The belief degree β is in the interval [0.7, 0.9]. The remaining parameters are
the same as in the example 4.1. The optimal value is calculated by SLSQP as
shown in Table 3.

Table 3: The optimal investment proportion and consumption rate for different
belief degree.

ω∗1 ω∗2 ω∗3 ω∗4 ω∗5 k∗t
β = 0.70 0.1774 0.0798 0.6010 0.0715 0.0701 0.0198
β = 0.75 0.0958 0.0499 0.5621 0.0443 0.0412 0.0336
β = 0.80 0.0794 0.0478 0.3639 0.0434 0.0402 0.0806
β = 0.85 0.0623 0.0410 0.2427 0.0375 0.0349 0.1605
β = 0.90 0.0454 0.0321 0.1590 0.0296 0.0276 0.2866

Table 3 shows that as kt increases, ω∗i decreases while the belief degree β
rises. This indicates that investors tend to adopt a more conservative strategy,
cutting back on high-risk investments while shifting resources toward consump-
tion. Their focus shifts to ensuring present stability and meeting immediate
needs, rather than chasing uncertain returns in the future.
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(a) The optimal investment propor-
tions

(b) The optimal consumption rate

Figure 1: The optimal investment proportions and consumption rate for
different belief degree

As illustrated in Fig.1, excluding algorithmic fluctuations, the optimal val-
ues match our analysis as the risk aversion level varies between [0.7, 0.9]. To
mitigate bankruptcy risk and enhance potential returns, investors may increase
allocations to risky assets, aiming for higher gains to accelerate capital recovery
or satisfy constraints.

5 Conclusion

This paper presents continuous-time investment and consumption models un-
der both no portfolio constraint and bankruptcy-constrained environments in
an uncertain system, and derives analytical and numerical solutions from the
optimistic model. The model’s effectiveness was validated through an analysis
involving five stocks from the Shanghai Stock Exchange. Results indicate that
the proposed model and method are well-suited for portfolio problems with
limited data for estimating return distributions. However, due to certain limi-
tations in the code, the model proved overly sensitive to specific values. Future
improvements aim to refine the algorithm to enhance its general applicability.

References

[1] Bellman R, Dynamic Programming, Science, 153 (1966), 34 - 37.
https://doi.org/10.1126/science.153.3731.34

[2] Bielecki T, Jin H, Pliska S, Zhou X, Continuous-time mean-variance port-
folio selection with bankruptcy prohibition, Mathematical Finance, 15
(2005), 213 - 244. https://doi.org/10.1111/j.0960-1627.2005.00218.x

[3] Jin T, Zhu Y, Shu Y, Cao J, Hongyan Yan and Depeng Jiang, Uncertain
optimal control problem with the first hitting time objective and applica-



Optimistic Value Based Optimization Problem 45

tion to a portfolio selection model, Journal of Intelligent & Fuzzy Systems,
44 (2023), 1585-1599. https://doi.org/10.3233/jifs-222041

[4] Liu B, Uncertainty Theory, Springer Verlag, Berlin, 2007.

[5] Liu B, Extreme value theorems of uncertain process with application to
insurance risk model, Soft Computing, 17 (2013), 549 - 556.
https://doi.org/10.1007/s00500-012-0930-5

[6] Merton R, Lifetime portfolio selection under uncertainty: The continuous-
time case, Review of Economics and Statistics, 51 (1969), 247 - 257.
https://doi.org/10.2307/1926560

[7] Qin Z, Kar S, Zheng H, Uncertain portfolio adjustingmodel using semi-
absolute deviation, Soft Computing, 20 (2016), 717 -725.
https://doi.org/10.1007/s00500-014-1535-y

[8] Sharpe W, Capital asset prices: A theory of market equilibrium under
conditions of risk, The Journal of Finance, 19 (1964), 425 - 442.
https://doi.org/10.1111/j.1540-6261.1964.tb02865.x

[9] Sheng L, Zhu Y, Optimistic value model of uncertain optimal control, In-
ternational Journal of Uncertainty, Fuzziness and Knowledge-Based Sys-
tems, 21(2013), 75 - 87. https://doi.org/10.1142/s0218488513400060

[10] Yao K, Extreme values and integral of solution of uncertain differential
equation, Journal of Uncertainty Analysis and Applications, 1 (2013), 16
- 36. https://doi.org/10.1186/2195-5468-1-2

[11] Yao K, Chen X, A numerical method for solving uncertain differential
equations, , Journal of Intelligent & Fuzzy Systems, 2013 (2013), no. 25,
825 - 832. https://doi.org/10.3233/ifs-120688

[12] Yao K, Liu B, Parameter estimation in uncertain differential equations,
Fuzzy Optimization and Decision Making, 19 (2020), 1 - 12.
https://doi.org/10.1007/s10700-019-09310-y

[13] Ye T, Liu B, Uncertain hypothesis testing and uncertain differential equa-
tions, Fuzzy Optimization and Decision Making, 22 (2023), 195 - 211.
https://doi.org/10.1007/s10700-022-09389-w

[14] Zhu Y, Uncertain optimal control with application to a portfolio selection
model, Cybernetics and Systems: An International Journal, 41 (2010),
535 - 547. https://doi.org/10.1080/01969722.2010.511552

Received: January 27, 2025; Published: February 17, 2025


	Introduction
	Preliminary
	Portfolio Model
	Empirical analysis
	Conclusion

