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Abstract

In this short paper, we present a draft approach for modeling spectral distributions
using a non-iterative function. With a simple change of constants, this function can
reproduce multiple distributions with a precision of up to 1077 in the computation of
normalized standard deviation, when using 107 samples and a computation time under
one second, without any optimization or parallelization. The computation was
performed on an HP Z workstation. This function successfully models the GUE, GOE
distributions, the spacing distribution of the non-trivial zeros of the Riemann zeta
function, and the Wigner semicircle. All cases were validated using the
Kolmogorov-Smirnov test.

Unlike traditional methods based on random matrices or integrable equations, this
approach starts from a highly precise empirical result, without reference to any
theoretical model, suggesting the existence of an as-yet unknown underlying structure.
This function belongs to a family of non-iterative functions that have already been used
for other achievements such as: Synthesizing shapes from the simplest (circle, square,
etc.) to much more complex structures. Modeling a long series of known and unknown
distributions. Modeling dynamic phenomena (bifurcations, hysteresis, R. May's
logistic equation for r=4). The point cloud modeling Shaw’s dripping faucet
experiment. Heavy-tailed distributions and other types.


mailto:j.elmesbahi@ensem.ac.ma

128 Jelloul Elmesbahi

Introduction

Complex iterative methods have traditionally been used to model the spacing
distribution of the zeros of the Riemann zeta function, notably in the work of E. Wigner
[1], who introduced an analogy between the zero spacings of the zeta function and
energy levels of a complex quantum system. F. Dyson [2] expanded on Wigner’s ideas
by analyzing random matrices and their link to the zeta zeros. A. Odlyzko [4]
conducted computational studies of the zeta zeros and provided numerical evidence. H.
Montgomery [3] formalized connections between the statistical distribution of the zeta
zeros and the eigenvalues of random matrices.

Other approaches include two-point correlation functions, combinatorial and
probabilistic methods. However, despite the importance of these distributions,
combined modeling remains difficult due to the computational complexity involved.

Objective

In this paper, we propose a non-iterative function capable of reproducing the spectral
distributions of GOE, GUE, and the spacing distribution of the non-trivial zeros of the
Riemann zeta function through a simple change of constants. To model the Wigner
semicircle, we also draw inspiration from the same function. All distributions are
validated via the Kolmogorov-Smirnov test. This approach allows not only fast and
flexible reproduction—computation time is less than one second without any
optimization or parallelization, with 107 samples—but also perfect agreement with the
normalized standard deviations reported in the literature. For the GUE case, we reach a
precision of 107'7. This function is not unique; other non-recursive functions from the
same family can produce similar results. In the Wigner semicircle example, we present
two functions that give approximately the same outcomes. In addition to modeling
spectral distributions, it is worth noting that all achievements described here stem from
the same family of non-iterative functions, without the use of differential systems or
traditional iterations. Below, we list conceptually significant applications enabled by
this family:

Massive synthesis of thousands of shapes, from the simplest (disks, squares, etc.) to the
most complex (biological, geometric, or abstract structures) [5]. In many cases, these
shapes can be transformed into a straight line segment by simply changing a constant
from an integer to a real number (e.g., 3 to 3.5), or from a disk to a square, or from an
empty square to one with a point cloud—just by changing a constant by 104 [6], [7],
[5].

A long series of known and unknown distributions produced by a single family of
non-iterative functions. The focus was on the shape of the distributions rather than their
statistical properties. The number of these distributions is not limited to those
presented; more can be constructed by modifying constants, the number of terms, and
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making combinations—independently of traditional statistical methods [8].
Reproducing dynamic systems phenomena, such as R. May’s logistic equation for r=4
[9], Shaw’s dripping faucet point cloud [10], various types of bifurcations (simple,
double, triple), simple and multiple hysteresis loops with or without intersections, and
sigmoids. For instance, a double bifurcation can transform into a triple one and then
into a sigmoid; a simple hysteresis can become multiple with or without intersections,
then evolve into a sigmoid—all driven by changes in constants.

Heavy-tailed distributions.

Modeling distributions derived from fundamental differential equations, such as
velocity profiles in the Navier-Stokes equations (with specific statistical constraints),
or the distribution profiles from the Black-Scholes model. The goal is not to solve
differential equations or find universal analytical solutions, but to reproduce a
statistical distribution linked to a given real-world scenario, characterized by a mean
value and standard deviation [11].

To view the results, only three clicks are required:

Choose a series of constants (n1, n2, or n3) along with its reference distribution.

Paste it into a Matlab environment.

Execute

REPRODUCING THE DISTRIBUTIONS

%% GOE ETN=0.53864900000000016

d2=0;d1=1;
a1=1.3952445652;a2=5.5;a3=0.08;b1=2;b2=5.5;b3=0.1563771; % (n3)
cl=1;c2=8.607153897300483968998;

%% RIEMANN ETN=0.42296000000000011

d2=0;d1=1;
al1=1.08154;a2=5.8;a3=0.08;b1=2;b2=5.8;b3=0.08281781; % (n2)
c1=1;c2=8.64411291230259504223;

% GUE ETN=0.42298754596461996

d2=0;d1=1;
a1=1.08154000000000005698;a2=5.8;a3=0.08;b1=2;b2=5.8;p3=0.08281781; %
(n1)

c1=1;c2=8.644716473516317;

% FONCTION GENERATRICE

x=1:10"-4:10"3,;
yl=al*acot(cot((x).”45)).”0.38+a2*acot(cot((x).”33)).”a3 ;
y2=bl*acot(cot((x).”3)).”0.2+b2*acot(cot((x).”47.3))."b3;
y=cl*d1l*abs(yl+y2).”\(c2)-d2 ;
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tic;figure(1);mean_y=mean(y);std_y=std(y);y_normalized=y/mean_y;
mean_normalized=mean(y_normalized);std_normalized=std(y_normalized);
normalized_std=std_normalized/mean_normalized;fprintf(‘Mean of original y:
%.6f\n",mean_y);

fprintf(*Mean of normalized y: %.12f\n’,mean_normalized);
fprintf('Standard deviation of normalized y: %.17\n",std_normalized);
fprintf('Normalized standard deviation (ETN): %.17f\n",normalized_std);
histogram(y_normalized,300,"Normalization®, pdf*);

title('Dyson Threefold Way-Normalized Histogram of y*);xlabel("Normalized
Spacing");

ylabel("Probability Density");grid on;elapsed_time=toc;

fprintf(*The computation time is%.5f seconds.\n", elapsed_time);
text(0.32,0.90,sprintf("Normalized
Std:%0.18f",normalized_std),"Units’,'normalized’,'FontSize’,12,"Color","r");
text(0.50,0.75,sprintf(" Time:

%.4fs" elapsed_time),"Units’,"'normalized’,"FontSize’,12,'Color",'r");

%% KOLMOGOROV-SMIRNOV  TEST

x=0:0.01:4;
y3=@(X)(pi/2*x.*exp(-(pi*x."2)/4)); % GOE (n3)

x=0:0.01:3;
y3= @(x)(32/pin2)*x."2.*exp(-((4/pi)*x."2)); % GUE, RIEMANN (nl, n2)

y=y_normalized;data2 =y;nbins = 300;
[counts2,edges2]=histcounts(data2,nbins,"Normalization®, pdf");
bin_centers2=(edges2(1:end-1)+edges2(2:end))/2;
theoretical_curve=y3(bin_centers2);
[h,p_value,ks2stat]=kstest2(counts2,theoretical_curve);
figure;histogram(y,"Normalization',"pdf');hold on;
plot(bin_centers2,theoretical_curve,'r-',"LineWidth’,2);
legend("H2",'theoretical curve (y3)");xlabel("Normalized Spacing');
title("Comparaison of the histogram H2 with the theoriticalque curve’);
ylabel("Probability Density");grid on;elapsed_time=toc;
hold off;figure;y7=counts2-theoretical_curve;
plot(edges2(1:300),y7);
mean_err=mean(abs(counts2-theoretical_curve))

MSE=mean((counts2-theoretical_curve).”2)

RMSE=sqrt(mean((counts2-theoretical_curve).”2))

p_value
h
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Fig.1 Comparative graphical representations of spectral distributions.(a,b) GUE
distribution-Simulated histogram (black) superimposed (red), showing a normalized
standard deviation = 0.42298754596461996 and computation time of 0.1995s.

(c,d) : Distribution of the spacing between non trivial zeros of the Riemann zeta
function-Simulated histogram with Std=0.42296000000000110, time 0.2257s.

(e,f) :GOE distribution, Std=0.53589800000000159 and coputation time of 0.2255s.
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%% WIGNER DEMICIRCLE (1) Std= 0.9891; Mean=2.1*10"-16

x=1:10"-4:1013;

nbins = 300;

p=0.98888589; k =2.44123198721; q =0.545; T=2.000000000000294;
yl=acot(p*cot(x.~37));

y2=acot(p*cot(x."35));

y=-T+k*abs(yl.72-y2.72)."\q;

%% WIGNER DEMICIRCLE (2) Std=0.9998; Mean= 1.8*10"-16

x=1:10"-4:10"3;
nbins = 300;

C1=5.50 ; C2=7.795601; D= 1.070659; T= 2.0488261313523485;
y1=C1l*asin(sin(x.”*11)).*cos(x.”33);
y2=C2*asin(sin(x.~11)).*sin(x.~33);
y=-T+abs(y1+D*y2).”0.51;

tic;figure(1);histogram(y,300,'Normalization®, pdf');mean_y=mean(y);std_y=std(
y);

fprintf("Mean:%.17f\n",mean_y);fprintf('standard deviation=%.3f\n",std_y);
text(0.01,0.95,sprintf(‘Mean:%.17f",mean_y), Units",'normalized’,"FontSize',12,"
Color','r");

title('SEMICIRCLE OF WIGNER');xlabel("X");

ylabel(*Probability Density");grid on;elapsed_time=toc;

fprintf(‘time is %.6f seconds.\n", elapsed_time);

text(0.01,0.85,sprintf("Time:% .5f
s'.elapsed_time),'Units’,"normalized’,'FontSize’,12,"Color','r");
text(0.035,0.90,sprintf("Std:%
5f',std_y),"Units','normalized’,'"FontSize',12,'Color",'r");

%% KOLMOGOROV-SMIRNOV TEST

datal=y;[f xi]=ksdensity(datal);cdf wigner=cumtrapz(xi,f);
xyl=cdf_wigner;figure;histogram(datal,nbins,’'Normalization’," pdf’);
hold on;grid on;R=2;N=10"7;nbins=300;x=linspace(-R,R,N);
pdf_wigner=(2/(pi*R"2))*sqrt(R"2-x."2);
cdf_wigner=cumtrapz(x,pdf_wigner);xy2=cdf_wigner;u=rand(N, 1);
data2=interpl(cdf_wigner,x,u,’linear’);
plot(x,pdf_wigner,'r-','LineWidth",2);xlabel(*X");ylabel(‘Density");
title(SEMICIRCLE OF WIGNER');

grid on;[h,p]=kstest2(xy1,xy2)
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Fig.2. Modeling of the Wigner semicircle distribution-two variants.

(a,b)First variant-Simulated histogram (black) with mean=1.8*10"" and Std=0.9998
and computation time of 0.2016s, theoritical Wigner (red).

(c,d) Second variant- Simulated histogram (black) with mean=2.1*10"1" and
Std=0.98919 and computation time of 0.2016s, theoritical Wigner (red).

Conclusion

This preliminary study highlights progress in modeling spectral distributions using a
non-iterative function. With simple changes in constants, this function accurately
reproduces the normalized standard deviations of fundamental distributions such as
GUE, GOE, the spacing distribution of the Riemann zeta zeros, and the Wigner
semicircle—all validated by the Kolmogorov-Smirnov test. Belonging to a family of
non-iterative functions previously used to model complex dynamic phenomena
(bifurcations, hysteresis, deterministic chaos), this function opens up a new field of
exploration: that of a unified, underlying mathematical structure capable of linking
statistical distributions, nonlinear dynamics, and morphogenesis. One promising
extension to other spectral distributions involves the use of artificial intelligence to
select constants. This entire method is based on a family of non-iterative
functions—not on random matrices or integrable equations. Its origin lies in highly
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precise empirical results, unrelated to any theoretical model, suggesting an as-yet
unknown underlying structure.
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