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Abstract 

 

In this short paper, we present a draft approach for modeling spectral distributions 

using a non-iterative function. With a simple change of constants, this function can 

reproduce multiple distributions with a precision of up to 10⁻¹⁷ in the computation of 

normalized standard deviation, when using 10⁷ samples and a computation time under 

one second, without any optimization or parallelization. The computation was 

performed on an HP Z workstation. This function successfully models the GUE, GOE 

distributions, the spacing distribution of the non-trivial zeros of the Riemann zeta 

function, and the Wigner semicircle. All cases were validated using the 

Kolmogorov-Smirnov test. 

Unlike traditional methods based on random matrices or integrable equations, this 

approach starts from a highly precise empirical result, without reference to any 

theoretical model, suggesting the existence of an as-yet unknown underlying structure. 

This function belongs to a family of non-iterative functions that have already been used 

for other achievements such as: Synthesizing shapes from the simplest (circle, square, 

etc.) to much more complex structures. Modeling a long series of known and unknown 

distributions. Modeling dynamic phenomena (bifurcations, hysteresis, R. May's 

logistic equation for r=4). The point cloud modeling Shaw’s dripping faucet 

experiment. Heavy-tailed distributions and other types. 
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Introduction  
 

Complex iterative methods have traditionally been used to model the spacing 

distribution of the zeros of the Riemann zeta function, notably in the work of E. Wigner 

[1], who introduced an analogy between the zero spacings of the zeta function and 

energy levels of a complex quantum system. F. Dyson [2] expanded on Wigner’s ideas 

by analyzing random matrices and their link to the zeta zeros. A. Odlyzko [4] 

conducted computational studies of the zeta zeros and provided numerical evidence. H. 

Montgomery [3] formalized connections between the statistical distribution of the zeta 

zeros and the eigenvalues of random matrices. 

Other approaches include two-point correlation functions, combinatorial and 

probabilistic methods. However, despite the importance of these distributions, 

combined modeling remains difficult due to the computational complexity involved. 

 

Objective 
 

In this paper, we propose a non-iterative function capable of reproducing the spectral 

distributions of GOE, GUE, and the spacing distribution of the non-trivial zeros of the 

Riemann zeta function through a simple change of constants. To model the Wigner 

semicircle, we also draw inspiration from the same function. All distributions are 

validated via the Kolmogorov-Smirnov test. This approach allows not only fast and 

flexible reproduction—computation time is less than one second without any 

optimization or parallelization, with 10⁷ samples—but also perfect agreement with the 

normalized standard deviations reported in the literature. For the GUE case, we reach a 

precision of 10⁻¹⁷. This function is not unique; other non-recursive functions from the 

same family can produce similar results. In the Wigner semicircle example, we present 

two functions that give approximately the same outcomes. In addition to modeling 

spectral distributions, it is worth noting that all achievements described here stem from 

the same family of non-iterative functions, without the use of differential systems or 

traditional iterations. Below, we list conceptually significant applications enabled by 

this family: 

Massive synthesis of thousands of shapes, from the simplest (disks, squares, etc.) to the 

most complex (biological, geometric, or abstract structures) [5]. In many cases, these 

shapes can be transformed into a straight line segment by simply changing a constant 

from an integer to a real number (e.g., 3 to 3.5), or from a disk to a square, or from an 

empty square to one with a point cloud—just by changing a constant by 10⁻¹⁴ [6], [7], 

[5]. 

A long series of known and unknown distributions produced by a single family of 

non-iterative functions. The focus was on the shape of the distributions rather than their 

statistical properties. The number of these distributions is not limited to those 

presented; more can be constructed by modifying constants, the number of terms, and  
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making combinations—independently of traditional statistical methods [8]. 

Reproducing dynamic systems phenomena, such as R. May’s logistic equation for r=4 

[9], Shaw’s dripping faucet point cloud [10], various types of bifurcations (simple, 

double, triple), simple and multiple hysteresis loops with or without intersections, and 

sigmoids. For instance, a double bifurcation can transform into a triple one and then 

into a sigmoid; a simple hysteresis can become multiple with or without intersections, 

then evolve into a sigmoid—all driven by changes in constants. 

Heavy-tailed distributions. 

Modeling distributions derived from fundamental differential equations, such as 

velocity profiles in the Navier-Stokes equations (with specific statistical constraints), 

or the distribution profiles from the Black-Scholes model. The goal is not to solve 

differential equations or find universal analytical solutions, but to reproduce a 

statistical distribution linked to a given real-world scenario, characterized by a mean 

value and standard deviation [11]. 

To view the results, only three clicks are required: 

Choose a series of constants (n1, n2, or n3) along with its reference distribution. 

Paste it into a Matlab environment. 

 

Execute  

REPRODUCING THE DISTRIBUTIONS 

%% GOE      ETN= 0.53864900000000016 

d2=0;d1=1; 

a1=1.3952445652;a2=5.5;a3=0.08;b1=2;b2=5.5;b3=0.1563771;  % (n3) 

c1=1 ;c2=8.607153897300483968998;   
 

%% RIEMANN     ETN=0.42296000000000011 

d2=0;d1=1;  

a1=1.08154;a2=5.8;a3=0.08;b1=2;b2=5.8;b3=0.08281781;   % (n2)     

c1=1;c2=8.64411291230259504223;    
  

% GUE    ETN=0.42298754596461996 

d2=0;d1=1;  

a1=1.08154000000000005698;a2=5.8;a3=0.08;b1=2;b2=5.8;b3=0.08281781;   % 

(n1) 

c1=1;c2=8.644716473516317;   
  

% FONCTION   GENERATRICE 

x=1:10^-4:10^3; 

y1=a1*acot(cot((x).^45)).^0.38+a2*acot(cot((x).^33)).^a3 ; 

y2=b1*acot(cot((x).^3)).^0.2+b2*acot(cot((x).^47.3)).^b3; 

y=c1*d1*abs(y1+y2).^(c2)-d2 ;  
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tic;figure(1);mean_y=mean(y);std_y=std(y);y_normalized=y/mean_y;   

mean_normalized=mean(y_normalized);std_normalized=std(y_normalized);  

normalized_std=std_normalized/mean_normalized;fprintf('Mean of original y: 

%.6f\n',mean_y); 

fprintf('Mean of normalized y: %.12f\n',mean_normalized);  

fprintf('Standard deviation of normalized y: %.17\n',std_normalized); 

fprintf('Normalized standard deviation (ETN): %.17f\n',normalized_std); 

histogram(y_normalized,300,'Normalization','pdf');  

title('Dyson Threefold Way-Normalized Histogram of y');xlabel('Normalized 

Spacing');  

ylabel('Probability Density');grid on;elapsed_time=toc;  

fprintf('The computation time is%.5f seconds.\n', elapsed_time); 

text(0.32,0.90,sprintf('Normalized 

Std:%.18f',normalized_std),'Units','normalized','FontSize',12,'Color','r'); 

text(0.50,0.75,sprintf(' Time: 

%.4fs',elapsed_time),'Units','normalized','FontSize',12,'Color','r'); 
  

%%   KOLMOGOROV-SMIRNOV   TEST  
  

x=0:0.01:4;  

y3=@(x)(pi/2*x.*exp(-(pi*x.^2)/4));                 % GOE (n3) 
  

x=0:0.01:3;    

y3= @(x)(32/pi^2)*x.^2.*exp(-((4/pi)*x.^2));   % GUE, RIEMANN  (n1, n2) 
  

y= y_normalized;data2 =y;nbins = 300;  

    [counts2,edges2]=histcounts(data2,nbins,'Normalization','pdf');  

    bin_centers2=(edges2(1:end-1)+edges2(2:end))/2;  

    theoretical_curve=y3(bin_centers2);  

    [h,p_value,ks2stat]=kstest2(counts2,theoretical_curve);    

    figure;histogram(y,'Normalization','pdf');hold on; 

    plot(bin_centers2,theoretical_curve,'r-','LineWidth',2); 

    legend('H2','theoretical curve (y3)');xlabel('Normalized Spacing');  

    title('Comparaison of the histogram H2 with the theoriticalque curve'); 

    ylabel('Probability Density');grid on;elapsed_time=toc;  

    hold off;figure;y7=counts2-theoretical_curve; 

    plot(edges2(1:300),y7); 

    mean_err=mean(abs(counts2-theoretical_curve))     

MSE=mean((counts2-theoretical_curve).^2)          

RMSE=sqrt(mean((counts2-theoretical_curve).^2))   

 p_value 

    h  
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(a) (b) 
 

(c) (d) 

 

(e) (f) 

 

Fig.1 Comparative graphical representations of spectral distributions.(a,b) GUE 

distribution-Simulated histogram (black) superimposed (red), showing a normalized 

standard deviation = 0.42298754596461996 and computation time of 0.1995s. 

(c,d) : Distribution of the spacing between non trivial zeros of the Riemann zeta 

function-Simulated histogram with Std=0.42296000000000110, time 0.2257s. 

(e,f) :GOE distribution, Std=0.53589800000000159 and coputation time of 0.2255s. 
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%%   WIGNER DEMICIRCLE (1)    Std= 0.9891; Mean=2.1*10^-16 

 

x=1:10^-4:10^3; 

nbins = 300; 

p=0.98888589; k =2.44123198721; q =0.545; T=2.000000000000294; 

y1=acot(p*cot(x.^37));  

y2=acot(p*cot(x.^35)); 

y=-T+k*abs(y1.^2-y2.^2).^q; 
  

%%   WIGNER DEMICIRCLE (2)   Std= 0.9998;    Mean= 1.8*10^-16 

 

x=1:10^-4:10^3; 

nbins = 300; 

 C1=5.50 ; C2= 7.795601; D= 1.070659; T= 2.0488261313523485; 

y1=C1*asin(sin(x.^11)).*cos(x.^33);  

y2=C2*asin(sin(x.^11)).*sin(x.^33); 

y=-T+abs(y1+D*y2).^0.51; 
   

tic;figure(1);histogram(y,300,'Normalization','pdf');mean_y=mean(y);std_y=std(

y); 

fprintf('Mean:%.17f\n',mean_y);fprintf('standard deviation=%.3f\n',std_y); 

text(0.01,0.95,sprintf('Mean:%.17f',mean_y),'Units','normalized','FontSize',12,'

Color','r');  

title('SEMICIRCLE OF WIGNER');xlabel('X'); 

ylabel('Probability Density');grid on;elapsed_time=toc;   

fprintf('time is %.6f seconds.\n', elapsed_time); 

text(0.01,0.85,sprintf('Time:% .5f 

s',elapsed_time),'Units','normalized','FontSize',12,'Color','r');  

text(0.035,0.90,sprintf('Std:% 

.5f',std_y),'Units','normalized','FontSize',12,'Color','r'); 
  

 %%   KOLMOGOROV-SMIRNOV TEST 

 

data1=y;[f,xi]=ksdensity(data1);cdf_wigner=cumtrapz(xi,f);  

xy1=cdf_wigner;figure;histogram(data1,nbins,'Normalization','pdf');  

hold on;grid on;R=2;N=10^7;nbins=300;x=linspace(-R,R,N); 

pdf_wigner=(2/(pi*R^2))*sqrt(R^2-x.^2);  

cdf_wigner=cumtrapz(x,pdf_wigner);xy2=cdf_wigner;u=rand(N, 1);  

data2=interp1(cdf_wigner,x,u,'linear');  

plot(x,pdf_wigner,'r-','LineWidth',2);xlabel('X');ylabel('Density'); 

title('SEMICIRCLE OF WIGNER'); 

grid on;[h,p]=kstest2(xy1,xy2)  
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 (a)     (b) 
 

 

 (c)  (d) 

 

 

Fig.2. Modeling of the Wigner semicircle distribution-two variants. 

 (a,b)First variant-Simulated histogram (black) with mean=1.8*10-17 and Std=0.9998  

and computation time of 0.2016s, theoritical Wigner (red). 

 (c,d) Second variant- Simulated histogram (black) with mean=2.1*10-17 and 

Std=0.98919  and computation time of 0.2016s, theoritical Wigner (red). 

 

 

Conclusion 
 

This preliminary study highlights progress in modeling spectral distributions using a 

non-iterative function. With simple changes in constants, this function accurately 

reproduces the normalized standard deviations of fundamental distributions such as 

GUE, GOE, the spacing distribution of the Riemann zeta zeros, and the Wigner 

semicircle—all validated by the Kolmogorov-Smirnov test. Belonging to a family of 

non-iterative functions previously used to model complex dynamic phenomena 

(bifurcations, hysteresis, deterministic chaos), this function opens up a new field of 

exploration: that of a unified, underlying mathematical structure capable of linking 

statistical distributions, nonlinear dynamics, and morphogenesis. One promising 

extension to other spectral distributions involves the use of artificial intelligence to 

select constants. This entire method is based on a family of non-iterative 

functions—not on random matrices or integrable equations. Its origin lies in highly  
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precise empirical results, unrelated to any theoretical model, suggesting an as-yet 

unknown underlying structure. 
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