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Abstract 

 

We introduce a unified modeling approach based on a single family of non-iterative 

functions capable of reproducing a wide spectrum of complex behaviors with 

exceptional precision and speed. Unlike traditional iterative or differential methods, 

this framework uses closed-form expressions whose qualitative behavior is governed 

solely by a small number of tunable constants. 

Using this family, we successfully model : 

 the logistic map of R. May for the fully chaotic regime [5], 

 the droplet pattern of a dripping faucet as originally captured by R. Shaw, 

through point cloud simulations[6], 

 a long series of statistical distributions[1], ranging from simple to heavy-tailed 

forms with controlled parameters , 

 the spectral distributions associated with random matrix theory, 

including GUE, GOE, the Wigner semicircle, and the spacing distribution of 

non-trivial zeros of the Riemann zeta function,[9] 

 and the synthesis of thousands of geometric and morphogenetic shapes, from 

elementary forms (disks, squares, rings) to highly complex biological-like or 

abstract structures[7],[8]. 

All results are obtained without iteration, without numerical approximation, and 

in computation times under one second for up to samples. This reveals an underlying 

functional structure capable of bridging chaotic systems, statistical models, spectral 

theory, and morphogenesis—all within a unified analytical framework.  
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Introduction 

 
This work presents a unified and remarkably simple approach to modeling shapes, 

dynamic transitions, and complex distributions, based on a family of non-iterative 

functions. In contrast to traditional methods that rely on differential equations, 

stochastic simulations, or iterative schemes, our method is built exclusively on closed-

form analytical expressions, in which the variation of one or two constants is sufficient 

to generate a wide range of behaviors. This strategy enables rapid and controlled 

exploration of a broad spectrum of physical, statistical, and morphogenetic phenomena. 

We present here six groups of curves, all generated by the same family of functions, 

with extremely short computation times (often under one second for several million 

points), demonstrating the expressive power of this functional approach. 

 

🔹 Group I: Dynamic Transitions – This group includes sigmoids, bifurcations, and 

hysteresis patterns, all modeled using a single non-iterative function. Each subfigure is 

generated by simply adjusting the constants of this equation. No iteration is involved, 

yet the full spectrum of classical dynamic system behaviors is reproduced. 

 

🔹 Group II: Geometric Deformations – A single function generates all the figures, 

from squares to diamonds, including smooth polygonal transformations. By varying 

the constants, one can smoothly transition from one shape to another, revealing a 

continuous geometric evolution. 

 

🔹 Group III: Morphogenetic Transitions – Figures (a) to (f) are obtained from one 

function, while curve (j) is generated using another function from the same family. 

Each pattern emerges from slight variations of constants, illustrating transitions from 

ordered forms to apparently chaotic structures. 

 

🔹 Group IV: Toroidal Networks and Complex Spatial Structures – Again, a single 

function is sufficient to reproduce various entangled network types, from dense point 

clouds to toroidal or diamond-like structures. The spatial arrangement is fully 

controlled by the constants, without relying on graph generation algorithms or 

optimization routines. 

 

🔹 Group V: Heavy-Tailed Distributions – These rare-event distributions, 

characterized by long tails and strong asymmetry, were all modeled using a single non-

iterative function, by modifying constants to control the mean-to-standard deviation 

ratio, set to 0.1254, 0.01, and 0.001 respectively. The displayed histograms are 

zoomed-in views, illustrating precise control over dispersion and tail behavior. 

 



 

Unified modeling of dynamics, geometry and distributions via a non-iterative …   175 

 

 

🔹 Group VI: Statistical Distributions – We successfully reproduced the characteristic 

shapes of distributions derived from the Navier-Stokes and Black-Scholes equations.  

 

While the curve shapes may not perfectly overlay the theoretical references, the key 

statistical values (mean, standard deviation, skewness) are accurately replicated, 

confirming the quantitative relevance of our method in applied contexts.  

At each step, you verify these results by proceeding as follows : 

1-Copy the equation with its respectve constants, 

2-Past it into a Matlab code environment, 

3-Execute it. 

To fully appreciate the expressive breadth of this functional family, the reader is invited 

to explore a dedicated  online gallery containing thousands of generated patterns : 
https://jelloul-elmesbahi.academy/wp-content/uploads/2025/04/Classeur1.pdf 

 

Realizations Generated by a Single Non-Iterative Functional 

Framework                                               
 

I. Dynamic transitions and sigmoid bifurcations 

 
x=1:1:10^6 ; 

         %sigmoid (d) 

m=18; n=5;p=10^-5; d=0; e=1; 

A1=m;A2=1.95;A3=0.3;A4=0.3;A5=0.3;A6=0.3;A7=e;A8=n;A9=-

16.25;A10=p;A11=-1; 

          %degenerate fork (c) 

A1=-1.65;A2=2;A3=0.1;A4=0.1;A5=0.1;A6=0.1;A7=0.1; 

A8=8;A9=-3.25;A10=1;A11=1;  

         %triple and simple fork (a, b) 

m=18; n=2; p=1; d=0; e=0.1;                 

A1=m;A2=1.95;A3=0.3;A4=0.3;A5=0.3;A6=0.3;A7=e;A8=n;A9=-16.25;A10=p; 

% (a,b,d)      

A11=1;        %% simple fork  

A11=-1;       %% triple fork 
  

y2=A1*cos(asin(A2*sin(x.^A3))).*(cos(x.^A4));   

y1=A11*cos(acos(2*sin(x.^A5))).*(sin(x.^A6)); 

y1=A7*y2.^A8+A9*y1 ; 

plot(A10*y1,y2,'.') 

 

 

 

https://jelloul-elmesbahi.academy/wp-content/uploads/2025/04/Classeur1.pdf
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(a)  (b)  (c)   (d)  
 

Fig.1. (a) Graph of the triple fork transformation into: (b) a simple fork, (c) 

degenerate fork, (d) a sigmoid.           

 

3. Simple hysteresis, multiple hysteresis without intersections and with intersections, 

sigmoid. 

x=1:1:10^6;  

A=0.2885;         B=3;   c=1;            % multiple hysteresis with intersections  

A=0.13;             B=3;   c=1;            % multiple hysteresis without intersections 

A=0.3;               B=3;   c=1;            % Simple hysteresis 

A=0.3;               B=5;   c=10^-3;     % sigmoid 
  

y2=20*cos(asin(0.34595*sin(x.^0.3))).*cos(x.^0.3);   

y1=-2.5*(acos(1+0.851*sin(x.^0.3))).*sin(x.^A); 

y1=2*10^-3*(y2.^B-655*y1); 

plot(y1*c,y2,'.'); 
           

                                                              

 (a) (b)  (c)  (d) 
 

Fig.2. Graph of the hysteresis transformation into: (a) simple hysteresis loop, (b) 

multiple non- intersecting loops, (c) multiple intersecting loops, (e) sigmoid curve. 

 

 

II. Polygonal Deformations and Geometric Transitions 
 

x=1:1:10^6;                                %6th rounded curves 

C1=01.75;C2=01.75;  

A1=0;B1=0.85;A2=0;B2=0.85;    

  

x=1:1:10^6;                                  % Started figures 

C1=1.3;C2=1.3;  
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A1=0;        B1=1.4;   A2=0;        B2=1.4;      %5th case  

A1=0.01;   B1=1.4;   A2=0.01;   B2=1.4;      %4th case 

A1=0.01;   B1=1.4;   A2=0.1;     B2=1.34;    %3rd case 

A1=0.015; B1=1.42; A2=0.015; B2=1.42;    %2nd case 

A1=0;        B1=1.42; A2=0;        B2=1.42;    %1st case  
  

y1=asin(A1+B1*sin(x.^C1));  

y2=acos(A2+B2*cos(x.^C2)); 
  

plot(y1.*y2,4*y2,'.');       % geometric    figure 4 

plot(y1-y2,y2+y1,'.');       % geometric   figure 3 

plot(y1-y2,y2,'.');             % geometric   figure 2 

plot(y1,y2,'.');                  % geometric    figure 1  
 

  

 (r)  (s)  (t)     (v) 

   (m)   (n)  (o)  (p) 

 (i )  (j )  (k )   (l ) 

 (e)   (f)   (g)  (h) 

(a) (b) (c)  (d) 

(z1)  (z2)  (z3)  (z4) 
 

 

Fig.3. (a-o) Progressive geometric transformations within a unified functional 

framework.  
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III. Structured Filling and Internal Wave Patterns 
 

k=1; A1=1.3; A2=1.31; x=1:10^-4:21; % network (f) 

 % waves (a,b,c,d,e) 

     k=1.51;   

A2=1.359;A1=1.35; % wave(e)   

A2=1.357;A1=1.35; % wave(d)  

A2=1.355;A1=1.35; % wave(c)    

A2=1.353;A1=1.35; % wave(b)   

A2=1.350;A1=1.35; % wave(a)  

y1=asin(k*sin(x.^A1)); y2=asin(k*cos(x.^A2)); plot(y1,y2,'.')       

 

 

(a)  (b) (c)  (d) (e) (f) 
 

Fig.4. Progressive evolutionof a curved pattern within a square,generated by the same 

non-iterative function (a, b,c, d, e, f). 

Chaotic arrangement of curves  

 

 

x=1:10^-4:1*10^2;  

 y1=(asin(1.51*sin(x.^1.135)))-(acos(1.51*cos(x.^1.35)));       

 y2=(asin(1.51*sin((x).^1.355)));   

 plot (y1,y2); 

 

 

 
 

Fig.5. Autonomous chaotic field enclosed within self-generated polygonal limits. 
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IV. Extreme regimes 
 

These two networks illistrate two extreme regimes :one adopts an ordered toroidal  

tructure (a),while the is a fluid and chaotic entanglement(b). 

This section party relies on the analytical expression of the staircase function y1 : 

 
  

 

x=0:0.001:100;k=1; s=0.3;g=15;u=5; f=1; a=0.0132+f*10^(-8);    

b=150+f*10^(-8);c=25+f*10^(-8); q=5; 

X1=16*sin(a*(x-b/pi*acot(cot(pi*x./b))).^q); 

X2=0.52*cos(x.^2)+8*sin(a*(x-c/pi*acot(cot(pi*x./c))).^q); 

X3=2*asin(2*sin(0.1*x.^1.25)); Y1=5*cos(a*(x-b/pi*acot(cot(pi*x./b))).^q); 

Y2=0.52*sin(x.^2)+8*cos(a*(x-c/pi*acot(cot(pi*x./c))).^q); 

Y3=0.75*acos(s*cos(k*x.^1.25));  

X=X1.*cos(0.1*x)+X2.*sin(0.3*x)+X3.*sin(u*x); 

Y=Y1.*cos(0.05*pi*x)+Y2.*cos(3*pi*x)+Y3.*cos(g*x); %% toroidal tructure  

 plot(X,Y); 

 

x=0:0.1:30000; f=998;v=0.12; w=0.12; 

b=150+f*10^(-8); c=25+f*10^(-8); q=2.5;a=0.0132+f*10^(-8); 

X1=3*sin(a*(x-b/pi*acot(cot(pi*x./b))).^q); 

X2=v*cos(x.^32)-4*sin(a*(x-c/pi*acot(cot(pi*x./c))).^q); 

Y1=3*cos(a*(x-b/pi*acot(cot(pi*x./b))).^q); 

Y2=w*sin(x.^32)+4*cos(a*(x-c/pi*acot(cot(pi*x./c))).^q); 

X=X1.*X2+X1.*Y2+Y1;Y=Y1.*Y2-Y1.*X2;     % double rhombus  

X=X1+0.4*X2; Y=Y1-0.4*Y2;                             % ring 

plot (X,Y); 
 

These two networks illistrate two extreme regimes :one adopts an ordered toroidal 

tructure (a),while the is a fluid and chaotic entanglement (b). 

 

  (a)  (b)  (c) 

Fig.6. (a) , (b) and (c) illustrate two complex structures generated by sam non-

iterative function. 
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V. Rares event distributions 

x=1:1:10^6; 

A=0.001; B=-3.9;      C=-3.8;D=0.000981;        % Mv/Std=0.001       (c) 

A=0.001; B=-3.9;      C=-3.8;D=0.87;                % Mv/Std=0.01         (b) 

 

 

A=0.1;     B=-2;         C=-1.5;D=0.1;                  % Mv/Std=0.1254     (a) 

 

y= (A+(acos(sin(x.^3.17)))).^B.*(D+(acos(cos(x.^3.13)))).^C; 

 

figure(1);histogram(y,200,'Normalization','pdf');mean_y=mean(y);std_y=std(y); 

fprintf('Mean:%.2f\n',mean_y);fprintf('standard deviation=%.3f\n',std_y); 

text(0.05,0.9,sprintf('Mean: 

%.2f',mean_y),'Units','normalized','FontSize',12,'Color','r');  

text(0.05,0.83,sprintf('Std: 

%.2f',std_y),'Units','normalized','FontSize',12,'Color','r'); 

title(' Rare Event DISTRIBUTION');xlabel('Observed Value'); 

ylabel('Probability Density');grid on;   
 

 

(a) (b) (c) 

 

Fig.7. Heavy-tailed distributions generated by a single non-iterative function belonging 

to the same family as those used in the previous figures. Each subfigure (a), (b), and 

(c) corresponds to a case where the mean-to-standard deviation ratio is precisely 

controlled and set to 0.1254, 0.01, and 0.001, respectively. These distributions illustrate 

rare events with a concentration near low values and a significant long tail. The 

histograms shown are zoomed-in views of the high-density regions. 

 

 

VI. Black-Scholles distribution, Navier-Stocks distribution  

 

x=1:1:10^6;   

y=1.2792+(36.734*(5.96-

abs(2*(acot(cot(x.^35)).^.117785+abs(.199999*acot(cot(x.^3.3))).^1.029-

0.061*acot(cot(x.^23.327)))).^1.452)); 
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x=1:1:10^6;         

y=1.21*(2.76-2*(acos(cos(x.^13)).*acos(cos(x.^7))).^0.136266)-

0.43*(acos(cos(x.^3)).*acos(cos(x.^7.3))).^0.134; y=10*(y+0.5122);   

 

 

figure(1);histogram(y,200,'Normalization','pdf');mean_y=mean(y);std_y=std(y); 

fprintf('Mean:%.3f\n',mean_y);fprintf('standard deviation=%.3f\n',std_y); 

text(0.55,0.9,sprintf('Mean: 

%.3f',mean_y),'Units','normalized','FontSize',12,'Color','r');  

text(0.55,0.85,sprintf('Std: 

%.3f',std_y),'Units','normalized','FontSize',12,'Color','r'); 

title('BLACK-SCHOLLES DISRIBUTION');xlabel('Frequency of occurences'); 

ylabel('Probability Density');grid on;  

MV target=105.82    Std target=21.23;        MV calculated=8.37     Std 

calculated=4.46 

 

 

  (a)  (b)  
 

(c) (d) 
                                                            
Fig. 8. (a) Distribution calculated using the classical Black-Scholes method. (b) 

Distribution produced by the non-iterative function y.  

(c) Distribution produced by the non-iterative function y. (d)Velocity distribution 

obtained from the Navier-Stokes equation (mean velocity of 8.37) calculated 

classically.   

 

A preliminary framework has been developed to model these two distributions. Further 

work will focus on enhancing the structural accuracy of these distributions. 

Observation : It is possible to identify other non-iterative function within this same 

family that can simultaneously reproduce all these curves 
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Conclusion 
 

This series of figures demonstrates the expressive power of a single family of non-

iterative functions. by simply modifying a few constants within closed-form analytical 

expressions, we are able to reproduce — with precision, richness, and diversity — 

classical dynamic transitions (sigmoids, bifurcations, hysteresis), geometric 

deformations, morphogenetic networks, complex spatial structures, as well as realistic 

statistical distributions (Navier-Stokes, Black-Scholes) and heavy-tailed behaviors. All 

of this is achieved without iterative schemes, without numerical approximations, and 

with computation times under one second. This approach opens a new pathway toward 

a unified, fast, and controlled modeling of natural and mathematical complexity. 
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