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Abstract

We consider a standard t-process model of a financial market and
obtain the solution to the stock price process under the equivalent mar-
tingale measure. Using the equivalent martingale measure we derive
the European option pricing based on standard t-process. At the end of
this paper, the pricing formula by standard t-process is compared with
B-S’s formula by numerical simulation.

Keywords:European option; standard t-process; equivalent martingale
measure

1 Introduction

The classic B-S formula assumes that the price process of risky assets fol-
lows a geometric Brownian motion, but this assumption does not match the
current reality of the market. To solve this problem, many scholars have im-
proved the B-S option pricing model. Cox [1] and Merton [2] proposed the
jump-diffusion model. Hull and White [3] and Heston [4] proposed a random
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volatility model. Hubalek et al. [5] considered the radial random volatility
model with jump. Chan [6] constructed a geometric Lévy process. Schweizer
[7] presented a semimartingale model. Borland [8] proposed a non-Gaussian
price model driven by Tsallis distribution. Liu and Cui [9] and Wang and
Zhang [10] both studied this model. In thie paper,we establish a new process
which be composed of standard ¢-process.

The structure of this paper is as follows. In Section 2, we briefly introduce
the market model based on standard t-process and obtian the solution to the
stock price process under the equivalent martingale measure. In Section 3, we
use price model to deal with the pricing problem of European option based on
standard t-process.

2 Price Model Based on Standard ¢-Process

Let (Q, F,F, P) be a complete probability space with filtration F = {F; };>0
satisfying the standard assumptions. Given a standard Brownian motion W (t)
and a chi-squared random variable Y with degrees of freedom v, independent
of W (t).

Definition 2.1. A stochastic process M (t) is called a standard t—process if
it satisfies,

W(t)
VY /v

Remark 2.1. The standard t—process M (t) in the above definition is a mar-
tingale with respect to F; = o{W(s),Y;s < t}. In fact, for any s < ¢,

M(t) = (1)

Wi(t) W(s)

Therefore, the quadratic variation process of M (t) is given by

E[M®)|F]|=E

M(s).

(M) ==,

Assume there are only bond and stock in the market. The price Sy(t) of
the bond with a risk-free return r satisfies.

{ dSo(t) = rSo(t)dt,
So(0) = 1.
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The stock price S(t)(0 <t < T) follows
dS(t) = pS(t)dt + oS(t)dM(t), (2)
where p and o are constant, and M (t) is a standard ¢-process.

Definition 2.2. Under the equivalent martingale measure, the solution to
the stock price process is

S(t) = S(O) expl(r — 50*52)t + oM (1)), (3)

where 0 = E=2 and ]T/f(t) = M(t) + 0t is a standard t-process.

o

Proof. Assuming there is no arbitrage opportunity in the market, there is an
equivalent martingale measure, such that the process of discounted stock price
under the equivalent martingale measure is a martingale. Then the equivalent
martingale measure is defined by

@ — 19275_7/
dP 2 Y
We will prove that the discounted stock price process
_ S
So(t)

is a martingale under the probability measure (). In fact, apply Ito’s formula
to get

| Ft = exp{0M (1) (4)

S*(t) =e"'S(t)

dS*(t) =e " dS(t) — re "' S(t)dt
= "'S()[(1 — r)dt + cdM(t))]

—S*(D)oldM(t) + - "t

=S*(t)dM (t).
Under the equivalent martingale measure (), the stock price process is
dS(t) = rS(t)dt + oS(t)dM(t).

Apply Ito’s formula to get

din S(t) = (r — %JZ%)dt + od (L), (5)

Integrate both sides of the equation (2.4) to get

S(t) = S(0) exp|(r — %&%)t + o dI(2)].
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3 European Option Pricing Formula

Consider there is a European call option with a strike price of K and a
maturity date of 7. The payoff on the European call option is

C(T) = max[S(T) — K, 0].

Theorem 3.1. Given a European call option with the maturity date T" and
the strike price K, the call option price is given by

C(0) = S(0)M(dr) — Ke ™" M(d>), (6)
where
too y y In 39 4 (p 4 LT
M(dl):/ Y7 e 2P x U5 dy,
0 22F(§) O’\/T\/g

1y K 2y
pp—y dy,
22F(§) O’ﬁ\/g

and ®(x) is the standard normal cumulative distribution function.
Proof. Under equivalent martingale measure @), the stock price process is

S(T) = S(0) exp -(7“ - %U%)T + 01\7@)}
1L W (T) |
= 5(0) exp :(7’ — 50 ?)T + J\/Y_/]/: (7)
=S5(0)exp |(r— %02%)T +0o X;//_/j;

where X is a the standard normal random variable, independent of Y.
The price of call option is

C(0) = Eole " "C(T)] =« "B [(S(T) ~ K) Isiryo] . (8)

From(3.2) and S(T") > K, we get

K 1 /Y 1 JTv
X>(ln—8(0)—rT); E+§J 5
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Thus by the distribution of (X,Y’), we obtain that

+oo —|—oo o2y vy
- —rT/ / rTfl TJFU\F\/W—K)‘F 1 e_éyi e dedy
Vor o 25D(Y)
7_1 oo _1o%T z B}
’ 22F 2) (n sty —rT) /7o 430/ 2
+oo X1 Y +o0
1 2
_KG—TT/ yl 6V2dy/ e
0 22:[‘(5) (ln 5(0) T‘T)% TL+%U\/? \/271'

It can be calculated directly that

+OO 0'21/ €T
/ VIR LS
(n &5 —rT) L/ E+1 a\ﬁ V2
/*"O 1 /T
(

T 1 1 1 27‘(‘
! O )a 7lyu 2 \/?

()N
— <<ln$+rT) é\/%JF%U %)

S(0 a’v
52+ (r+ 12T

0\/7”

Yy

and

oo 1 .2
/ ——e 2dx
(lnﬁfrT)%w/%+%m/% V2T
K 1 |y 1 [Ty
/ (11)
B S(0) 1 [y 1 [|Tv

S0 o2
(=377

In
=
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From Equations (3.3), (3.4), and (3.5), we see that

+oo K1 Y 29 4 (4 L2y
co) =50 [ Loe |~ it Ll Y
o 2:1(5) oVT,[%
v Y (721/
o [Tty (W
o 2:0(5) oVT, %
= S(0)M(dy) — Ke "™ M(dy).
This concludes the proof.
4 Simulation Study
The price process for B-S is
C(0) = S(0)N(dy) — Ke "' N(dy), (12)

where N(z) is standard normal function, and

i = (hl% + (r+ %02)T> i, — (ln% + (r— %02)T> |

ovT oVT

Letting S(0) = 50, r = 0.04, 0 = 0.2, T'= 0.8 and v = 5, we use the price
Formulas (3.1) and (4.1) to calculate the option prices.

Table 1 is the European call option prices. As can be seen, with the increase
of K, the price of European call option gradually decreases, and the t-process
option price is higher than the B — S .

Tablel Comparison of numerical results of European options

K t B-S K t B-S
K =45 8.0474 74766 K =51 4.5155 3.8532
K=46 73617 6.7685 K =52 4.0671  3.3981
K =47 6.7130 6.1006 K =53 3.6579  2.9843
K =48 6.1031 54743 K =54 3.2863  2.6100
K =49 55332 4.8909 K =55 29502 2.2734
K =50 5.0040 4.3503 K =56 26476 1.9724
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