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Abstract

This paper examines a Solow-Swan type model with delay. The
local stability and Hopf bifurcation of the system are investigated from
a theoretical perspective.
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1 Introduction

Dohtani et al. [1] reconsider the modified version of the Solow-Swan model
[5, 6] introduced in [2]. Their consideration of expected permanent income is
based on Friedman [3], and the EPCP income of the representative household
is thus determined by the following distributed lag of y,

yp(t) =

∫ t

−∞
βeβ(τ−t)y(τ)dτ, (1)

where y is income per capita and yp is EPCP income per capita. Their resulting
model happens to be described by

k̇ = f(k)− (δ + n)k − c,

ċ = β [αf(k)− c] ,
(2)

where δ, n, α and β are positive parameters. Friedman [3] actually proposed
an estimate of the permanent component at time t as

yp(t) =

∫ t

−∞
W (τ − t)y(τ)dτ,
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where W (τ − t) = βeβ(τ−t) = βe−β(t−τ), namely he considered the gamma
distribution function

W (u, β, l) = βl
ul−1e−βu

(l − 1)!
,

with l = 1, i.e. the weak kernel case. In this paper, for simplicity, we assume
f(k) = km, m ∈ (0, 1), and examine the cases where W (τ − t) is the Dirac
delta function or the gamma distribution function with l = 2, i.e. the strong
kernel case. Conditions required for the presence of recurring cycles around
the model’s equilibrium point and their stability are determined.

2 Case Dirac delta function

If W (τ − t) is the Dirac delta function, then yp(t) = y(t − τ). Since the
consumption decision is assumed to depend on the EPCP income, i.e. c = αyp,
system (2) is changed into the following model

.

k = Akm − (δ + n)k − αAkm(t− τ). (3)

Eq. (3) has a unique positive equilibrium k∗ if α < 1, where (1− α)Akm−1∗ =
δ + n. To investigate the stability of the delayed system, we first make a
coordinate transformation such that a new system is centered at the origin,
and then linearize the resultant system at the origin to derive its characteristic
equation. Then, we obtain

λ− (δ + n)[m− (1− α)]

1− α
+

(δ + n)αm

1− α
e−λτ = 0. (4)

When there is no delay, i.e. τ = 0 in (3), the characteristic equation (4)
becomes λ = −(δ + n)(1 − α) < 0. Thus, k∗ is locally asymptotically stable.
Suppose τ > 0 in (3). Let λ = iω, ω > 0, be a root of the characteristic
equation (4), and rewrite (4) in terms of its real and imaginary parts as

ω =
(δ + n)αm

1− α
sinωτ,

(δ + n)[m− (1− α)]

1− α
=

(δ + n)αm

1− α
cosωτ.

It follows by taking the sum of squares that

ω2 =
(δ + n)2

1− α
[
−(1 + α)m2 + 2m− (1− α)

]
.

It is immediate to see that if the condition −(1 + α)m2 + 2m − (1 − α) > 0
holds, i.e. (1− α) / (1 + α) < m, then there exists ω > 0. As a result, Eq. (4)
has a pair of purely imaginary roots λ = ±iω0 at the critical values τj, where

ω0 = (δ + n)

√
−(1 + α)m2 + 2m− (1− α)

1− α
, (5)
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and

τj =
1

ω0

cos−1
{
m− (1− α)

αm

}
+

2jπ

ω0

, j = 0, 1, 2, ... (6)

Denote by λ(τ) = ν(τ) + iω(τ) the root of Eq. (4) satisfying ν(τj) = 0 and
ω(τj) = ω0. This step is to verify that the following transversality condition
hold. To see this, differentiating (4) with respect to τ , we have[

1− (δ + n)αm

1− α
τe−λτ

]
dλ

dτ
=

(δ + n)αm

1− α
λe−λτ , (7)

which implies

sign

{
d (Reλ)

dτ

∣∣∣∣
τ=τj

}
= sign

{
Re

(
dλ

dτ

)−1
τ=τj

}
= sign

{[
1− α

(δ + n)αm

]2}
> 0.

Consequently, the root of characteristic equation (4) near τj crosses the imag-
inary axis from the left to the right as τ continuously varies from a number
less than τj to one greater than τj. It remains to show that λ = iω0 is a
simple purely imaginary root of the characteristic equation (4). If λ = iω0 is a
repeated root, then (7) yields that iω0e

−iω0ττj = 0, which is clearly a contra-
diction. Summing up all works above lead us to state the following results.

Theorem 2.1. Let ω0 and τ0 be defined as in (5) and (6), respectively. If
α < 1 and 1− α < (1 + α)m, then the positive equilibrium k∗ of (3) is locally
asymptotically stable for τ ∈ [0, τ0), and unstable for τ > τ0. Furthermore, (3)
undergoes a Hopf bifurcation at k∗ when τ = τ0.

3 Case gamma distribution with strong kernel

Let W (τ − t) be the gamma distribution function with l = 2, i.e. the strong
kernel case. Setting

x =

∫ t

−∞
βe−β(t−τ)y(τ)dτ,

by the linear chain trick technique (MacDonald [4]), we have ẏp = β(x − yp)
and ẋ = β(y − x). From c = αyp, we deduce

ċ = αβ(x− yp) = αβx− βc.

Therefore, the model to study is
.

k = Akm − (δ + n)k − c,

ċ = αβx− βc,

ẋ = βAkm − βx.

(8)
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Proceeding as done before we obtain the following characteristic equation

λ3 + a1λ
2 + a2λ+ a3 = 0, (9)

where

a1 = −(δ + n)[m− (1− α)]

1− α
+ 2β, a2 =

{
−2(δ + n)[m− (1− α)]

1− α
+ β

}
β,

a3 = (δ + n)(1−m)β2 > 0.

According to the Routh-Hurwitz criterion, the stability conditions are vali-
dated if a1 > 0, a3 > 0 and a1a2 > a3.

Lemma 3.1. a1 > 0 if and only if one of the following conditions holds.

1) α ≤ 1−m;

2) α > 1−m and β > (δ + n)[m− (1− α)]/[2(1− α)].

Proof. The statement follows from the definition of a1.

Lemma 3.2. a1a2 > a3 if and only if one of the following conditions holds.

1) α < 8(1−m)/(8 +m);

2) α = 8(1−m)/(8 +m) and β 6= (δ + n)(1−m)/(9m);

3) 8(1−m)/(8 +m) < α < 1, β < β1 and β > β2, where

β1 =
(δ + n)

{
αm+ 4 [m− (1− α)]−

√
αm+ 8 [m− (1− α)]

}
4(1− α)

(10)

and

β2 =
(δ + n)

{
αm+ 4 [m− (1− α)] +

√
αm+ 8 [m− (1− α)]

}
4(1− α)

. (11)

Proof. Expliciting the terms in the inequality a1a2 > a3 yields the following
second order inequality in the term β,

2(1− α)2β2 + (δ + n)(1− α) {−(1−m)(1− α)− 5[m− (1− α)]} β

+ 2(δ + n)2[m− (1− α)]2 > 0. (12)

Let −(1 − m)(1 − α) − 5[m − (1 − α)] = −αm − 4 [m− (1− α)] ≥ 0, i.e.
α ≤ 4(1−m)/(4 + m). Then, (12) is always verified. Let −(1−m)(1− α)−
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5[m− (1− α)] = −αm− 4 [m− (1− α)] < 0, i.e. 4(1−m)/(4 +m) < α < 1.
Then, we calculate the discriminant ∆ of the polynomial in (12), and find

∆ = (δ + n)2(1− α)2 (αm+ 8α + 8m− 8)αm.

If αm + 8 [m− (1− α)] < 0, i.e. 4(1−m)/(4 + m) < α < 8(1−m)/(8 + m),
then ∆ < 0, and (12) holds true since the coefficient of β2 is positive. If
αm+ 8 [m− (1− α)] = 0, i.e. α = 8(1−m)/(8 +m), then the polynomial in
(12) becomes

2

(
1− 9m

8 +m

)2 [
β − (δ + n)(1−m)

9m

]2
.

If αm+ 8 [m− (1− α)] > 0, i.e. 8(1−m)/(8 +m) < α < 1, then ∆ > 0, and
(12) is solved by β < β1 and β > β2.

We have the following results on the stability of system (8).

Proposition 3.3. Let β1, β2 be defined as in (10), (11), respectively. The
equilibrium point of (8) is locally asymptotically stable if and only if

1) α < 8(1−m)/(8 +m);

2) α = 8(1−m)/(8 +m) and β 6= (δ + n)(1−m)/(9m);

3) 8(1−m)/(8 +m) < α < 1, β < β1 and β > β2.

Proof. The statement follows from the previous two lemmas, noticing that
8(1−m)/(8 + m) < 1−m as well as, when α > 1−m and β > (δ + n)[m−
(1− α)]/[2(1− α)], that one has (δ + n)[m− (1− α)]/[2(1− α)] < β1. Notice
that this last inequality is equivalent to

3(1−m)2(1− α)2 + 27[m− (1− α)]2 + 14(1−m)(1− α)[m− (1− α)] > 0,

and this holds true since we are in the case α > 1−m.

When 8(1−m)/(8+m) < α < 1, one can establish the existence of a cyclic
solution at β = β∗, with β∗ = β1, β2 if the characteristic equation (9) has a
pair of purely imaginary roots and the real parts of these roots change signs.
It is clear that a∗1a

∗
2 = a∗3 if β = β∗, where a∗j means aj (j = 1, 2, 3) evaluated

at β = β∗. Consequently, Eq. (9) rewrites as (λ + a∗1)(λ
2 + a∗2) = 0. Hence,

there exist a pair of purely imaginary roots λ1,2 = ±iω∗, with ω∗ =
√
a∗2, and

a real root λ3 = −a∗1. In order to show that the equilibrium point of system
(8) may undergo a Hopf bifurcation for β = β∗ we need to prove that λ1,2 are
simple roots of (9) and satisfy the transversality condition. Differentiating Eq.
(9) with respect to β, we obtain

(3λ2 + 2a1λ+ a2)
dλ

dβ
= −

(
a′1λ

2 + a′2λ+ a′3
)
, (13)
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where

a′1 = 2, a′2 = −2(δ + n)[m− (1− α)]

1− α
+ 2β∗, a′3 = 2(δ + n)(1−m)β∗.

To see that λ = iω∗ is a simple root of (9), we proceed assuming it is a repeated
root. Then, (13) yields −a′1ω2

∗+ia
′
2ω∗+a

′
3 = 0, and so the contradiction ω∗ = 0.

Using ω2
∗ = a∗2, we can derive from (13) that

Re

[
dλ

dβ

]
λ=iω∗

= −a
∗
1 (a′∗2 ) + a′∗1 a

∗
2 − a′∗3

2 (a∗2 + a∗21 )
.

Then, we conclude that

sign

{
d (Reλ)

dβ

∣∣∣∣
λ=iω∗

}
= sign {−a∗1a′∗2 − a′∗1 a∗2 + a′∗3 } . (14)

If the sign in (14) is positive, then only crossing of the imaginary axis from
left to right is possible as β increases. On the other hand, if the sign in (14)
is negative, then only crossing from left to right with increasing β occurs. In
order to investigate the sign in (14), we observe that

a′∗2 =
a∗2
β∗

+ β∗, a′∗3 =
2

β∗
a∗3 =

2

β∗
a∗1a

∗
2.

In this way, a direct calculation allows us to shows that

sign {−a∗1a′∗2 − a′∗1 a∗2 + a′∗3 } = sign

{
(δ + n)2[m− (1− α)]2

(1− α)2
− β2

∗

}
. (15)

Let us consider the following three cases: m − (1 − α) = 0, m − (1 − α) > 0
and m− (1− α) < 0. If m− (1− α) = 0, i.e. α = 1−m, then

sign {−a∗1a′∗2 − a′∗1 a∗2 + a′∗3 } = sign
{
−β2
∗
}
< 0.

If m− (1− α) > 0, i.e. 1−m < α < 1, then

−a∗1a′∗2 − a′∗1 a∗2 + a′∗3 > 0 ⇔ (δ + n)[m− (1− α)]

(1− α)
> β∗

⇔ αm±
√
αm+ 8 [m− (1− α)] < 0.

If β∗ = β2, then sign {−a∗1a′∗2 − a′∗1 a∗2 + a′∗3 } < 0. If β∗ = β1, then αm −√
αm+ 8 [m− (1− α)] < 0 holds true. In fact,

√
αm+ 8 [m− (1− α)] >
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√
αm > αm because m− (1−α) and αm < 1. Finally, if m− (1−α) < 0, i.e.

8(1−m)/(8 +m) < α < 1−m, then

−a∗1a′∗2 − a′∗1 a∗2 + a′∗3 > 0⇔ − (δ + n)2[m− (1− α)]2

(1− α)2
> β∗

⇔ αm+ 8 [m− (1− α)]±
√
αm+ 8 [m− (1− α)] < 0.

If β∗ = β2, then sign {−a∗1a′∗2 − a′∗1 a∗2 + a′∗3 } < 0 because αm+8 [m− (1− α)] >
0. If β∗ = β1, then αm + 8 [m− (1− α)] −

√
αm+ 8 [m− (1− α)] < 0 when

αm + 8 [m− (1− α)] < 1, i.e. if α < (9 − 8m)/(8 + m). Noticing that
1 − m < (9 − 8m)/(8 + m), we can conclude that this inequality to holds
true. Hence, we have sign {−a∗1a′∗2 − a′∗1 a∗2 + a′∗3 } > 0. According to the Hopf
bifurcation theorem, the previous analysis leads us to the following conclusions.

Theorem 3.4. Let 8(1−m)/(8 +m) < α < 1.

1) If m − (1 − α) 6= 0, i.e. α 6= 1 −m, then system (8) undergoes a Hopf
bifurcation at the equilibrium point when β∗ = β1 and β∗ = β2.

2) If m − (1 − α) = 0, i.e. α = 1 −m, then system (8) undergoes a Hopf
bifurcation at the equilibrium point when β∗ = β2.
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