Applied Mathematical Sciences, Vol. 18, 2024, no. 6, 281 - 288 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2024.919128

On Dynamics in a Solow-Swan Type Model

L. Guerrini

Department of Management Polytechnic University of Marche, Italy

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2024 Hikari Ltd.

Abstract

This paper examines a Solow-Swan type model with delay. The local stability and Hopf bifurcation of the system are investigated from a theoretical perspective.

Mathematics Subject Classification: 34K18, 91B62

Keywords: Hopf bifurcation; Solow; delay

1 Introduction

Dohtani et al. [1] reconsider the modified version of the Solow-Swan model [5,6] introduced in [2]. Their consideration of expected permanent income is based on Friedman [3], and the EPCP income of the representative household is thus determined by the following distributed lag of y,

$$y_p(t) = \int_{-\infty}^{t} \beta e^{\beta(\tau - t)} y(\tau) d\tau, \tag{1}$$

where y is income per capita and y_p is EPCP income per capita. Their resulting model happens to be described by

$$\dot{k} = f(k) - (\delta + n)k - c,
\dot{c} = \beta \left[\alpha f(k) - c\right],$$
(2)

where δ, n, α and β are positive parameters. Friedman [3] actually proposed an estimate of the permanent component at time t as

$$y_p(t) = \int_{-\infty}^{t} W(\tau - t)y(\tau)d\tau,$$

where $W(\tau - t) = \beta e^{\beta(\tau - t)} = \beta e^{-\beta(t - \tau)}$, namely he considered the gamma distribution function

 $W(u, \beta, l) = \beta^{l} \frac{u^{l-1} e^{-\beta u}}{(l-1)!},$

with l=1, i.e. the weak kernel case. In this paper, for simplicity, we assume $f(k)=k^m$, $m \in (0,1)$, and examine the cases where $W(\tau-t)$ is the Dirac delta function or the gamma distribution function with l=2, i.e. the strong kernel case. Conditions required for the presence of recurring cycles around the model's equilibrium point and their stability are determined.

2 Case Dirac delta function

If $W(\tau - t)$ is the Dirac delta function, then $y_p(t) = y(t - \tau)$. Since the consumption decision is assumed to depend on the EPCP income, i.e. $c = \alpha y_p$, system (2) is changed into the following model

$$\dot{k} = Ak^m - (\delta + n)k - \alpha Ak^m (t - \tau). \tag{3}$$

Eq. (3) has a unique positive equilibrium k_* if $\alpha < 1$, where $(1 - \alpha)Ak_*^{m-1} = \delta + n$. To investigate the stability of the delayed system, we first make a coordinate transformation such that a new system is centered at the origin, and then linearize the resultant system at the origin to derive its characteristic equation. Then, we obtain

$$\lambda - \frac{(\delta + n)[m - (1 - \alpha)]}{1 - \alpha} + \frac{(\delta + n)\alpha m}{1 - \alpha} e^{-\lambda \tau} = 0. \tag{4}$$

When there is no delay, i.e. $\tau = 0$ in (3), the characteristic equation (4) becomes $\lambda = -(\delta + n)(1 - \alpha) < 0$. Thus, k_* is locally asymptotically stable. Suppose $\tau > 0$ in (3). Let $\lambda = i\omega$, $\omega > 0$, be a root of the characteristic equation (4), and rewrite (4) in terms of its real and imaginary parts as

$$\omega = \frac{(\delta + n)\alpha m}{1 - \alpha} \sin \omega \tau, \qquad \frac{(\delta + n)[m - (1 - \alpha)]}{1 - \alpha} = \frac{(\delta + n)\alpha m}{1 - \alpha} \cos \omega \tau.$$

It follows by taking the sum of squares that

$$\omega^{2} = \frac{(\delta + n)^{2}}{1 - \alpha} \left[-(1 + \alpha)m^{2} + 2m - (1 - \alpha) \right].$$

It is immediate to see that if the condition $-(1+\alpha)m^2 + 2m - (1-\alpha) > 0$ holds, i.e. $(1-\alpha)/(1+\alpha) < m$, then there exists $\omega > 0$. As a result, Eq. (4) has a pair of purely imaginary roots $\lambda = \pm i\omega_0$ at the critical values τ_j , where

$$\omega_0 = (\delta + n)\sqrt{\frac{-(1+\alpha)m^2 + 2m - (1-\alpha)}{1-\alpha}},$$
 (5)

and

$$\tau_j = \frac{1}{\omega_0} \cos^{-1} \left\{ \frac{m - (1 - \alpha)}{\alpha m} \right\} + \frac{2j\pi}{\omega_0}, \quad j = 0, 1, 2, \dots$$
(6)

Denote by $\lambda(\tau) = \nu(\tau) + i\omega(\tau)$ the root of Eq. (4) satisfying $\nu(\tau_j) = 0$ and $\omega(\tau_j) = \omega_0$. This step is to verify that the following transversality condition hold. To see this, differentiating (4) with respect to τ , we have

$$\left[1 - \frac{(\delta + n)\alpha m}{1 - \alpha} \tau e^{-\lambda \tau}\right] \frac{d\lambda}{d\tau} = \frac{(\delta + n)\alpha m}{1 - \alpha} \lambda e^{-\lambda \tau},\tag{7}$$

which implies

$$sign\left\{ \left. \frac{d\left(Re\lambda \right)}{d\tau} \right|_{\tau=\tau_{j}} \right\} = sign\left\{ Re\left(\frac{d\lambda}{d\tau} \right)_{\tau=\tau_{j}}^{-1} \right\} = sign\left\{ \left[\frac{1-\alpha}{(\delta+n)\alpha m} \right]^{2} \right\} > 0.$$

Consequently, the root of characteristic equation (4) near τ_j crosses the imaginary axis from the left to the right as τ continuously varies from a number less than τ_j to one greater than τ_j . It remains to show that $\lambda = i\omega_0$ is a simple purely imaginary root of the characteristic equation (4). If $\lambda = i\omega_0$ is a repeated root, then (7) yields that $i\omega_0 e^{-i\omega_0 \tau} \tau_j = 0$, which is clearly a contradiction. Summing up all works above lead us to state the following results.

Theorem 2.1. Let ω_0 and τ_0 be defined as in (5) and (6), respectively. If $\alpha < 1$ and $1 - \alpha < (1 + \alpha)m$, then the positive equilibrium k_* of (3) is locally asymptotically stable for $\tau \in [0, \tau_0)$, and unstable for $\tau > \tau_0$. Furthermore, (3) undergoes a Hopf bifurcation at k_* when $\tau = \tau_0$.

3 Case gamma distribution with strong kernel

Let $W(\tau - t)$ be the gamma distribution function with l = 2, i.e. the strong kernel case. Setting

$$x = \int_{-\infty}^{t} \beta e^{-\beta(t-\tau)} y(\tau) d\tau,$$

by the linear chain trick technique (MacDonald [4]), we have $\dot{y}_p = \beta(x - y_p)$ and $\dot{x} = \beta(y - x)$. From $c = \alpha y_p$, we deduce

$$\dot{c} = \alpha \beta (x - y_p) = \alpha \beta x - \beta c.$$

Therefore, the model to study is

$$\begin{cases} \dot{k} = Ak^m - (\delta + n)k - c, \\ \dot{c} = \alpha \beta x - \beta c, \\ \dot{x} = \beta Ak^m - \beta x. \end{cases}$$
(8)

Proceeding as done before we obtain the following characteristic equation

$$\lambda^3 + a_1 \lambda^2 + a_2 \lambda + a_3 = 0, (9)$$

where

$$a_1 = -\frac{(\delta + n)[m - (1 - \alpha)]}{1 - \alpha} + 2\beta, \quad a_2 = \left\{-\frac{2(\delta + n)[m - (1 - \alpha)]}{1 - \alpha} + \beta\right\}\beta,$$

$$a_3 = (\delta + n)(1 - m)\beta^2 > 0.$$

According to the Routh-Hurwitz criterion, the stability conditions are validated if $a_1 > 0$, $a_3 > 0$ and $a_1 a_2 > a_3$.

Lemma 3.1. $a_1 > 0$ if and only if one of the following conditions holds.

- 1) $\alpha \le 1 m$;
- 2) $\alpha > 1 m$ and $\beta > (\delta + n)[m (1 \alpha)]/[2(1 \alpha)]$.

Proof. The statement follows from the definition of a_1 .

Lemma 3.2. $a_1a_2 > a_3$ if and only if one of the following conditions holds.

- 1) $\alpha < 8(1-m)/(8+m)$;
- 2) $\alpha = 8(1-m)/(8+m)$ and $\beta \neq (\delta + n)(1-m)/(9m)$;
- 3) $8(1-m)/(8+m) < \alpha < 1$, $\beta < \beta_1 \text{ and } \beta > \beta_2$, where

$$\beta_1 = \frac{(\delta + n) \left\{ \alpha m + 4 \left[m - (1 - \alpha) \right] - \sqrt{\alpha m + 8 \left[m - (1 - \alpha) \right]} \right\}}{4(1 - \alpha)} \tag{10}$$

and

$$\beta_2 = \frac{(\delta + n) \left\{ \alpha m + 4 \left[m - (1 - \alpha) \right] + \sqrt{\alpha m + 8 \left[m - (1 - \alpha) \right]} \right\}}{4(1 - \alpha)}.$$
(11)

Proof. Expliciting the terms in the inequality $a_1a_2 > a_3$ yields the following second order inequality in the term β ,

$$2(1-\alpha)^{2}\beta^{2} + (\delta+n)(1-\alpha)\left\{-(1-m)(1-\alpha) - 5[m-(1-\alpha)]\right\}\beta + 2(\delta+n)^{2}[m-(1-\alpha)]^{2} > 0. \quad (12)$$

Let
$$-(1-m)(1-\alpha) - 5[m-(1-\alpha)] = -\alpha m - 4[m-(1-\alpha)] \ge 0$$
, i.e. $\alpha \le 4(1-m)/(4+m)$. Then, (12) is always verified. Let $-(1-m)(1-\alpha) - 1$

 $5[m-(1-\alpha)] = -\alpha m - 4[m-(1-\alpha)] < 0$, i.e. $4(1-m)/(4+m) < \alpha < 1$. Then, we calculate the discriminant Δ of the polynomial in (12), and find

$$\Delta = (\delta + n)^2 (1 - \alpha)^2 (\alpha m + 8\alpha + 8m - 8) \alpha m.$$

If $\alpha m+8\left[m-(1-\alpha)\right]<0$, i.e. $4(1-m)/(4+m)<\alpha<8(1-m)/(8+m)$, then $\Delta<0$, and (12) holds true since the coefficient of β^2 is positive. If $\alpha m+8\left[m-(1-\alpha)\right]=0$, i.e. $\alpha=8(1-m)/(8+m)$, then the polynomial in (12) becomes

$$2\left(1-\frac{9m}{8+m}\right)^2\left[\beta-\frac{(\delta+n)(1-m)}{9m}\right]^2.$$

If $\alpha m + 8 [m - (1 - \alpha)] > 0$, i.e. $8(1 - m)/(8 + m) < \alpha < 1$, then $\Delta > 0$, and (12) is solved by $\beta < \beta_1$ and $\beta > \beta_2$.

We have the following results on the stability of system (8).

Proposition 3.3. Let β_1, β_2 be defined as in (10), (11), respectively. The equilibrium point of (8) is locally asymptotically stable if and only if

- 1) $\alpha < 8(1-m)/(8+m)$;
- 2) $\alpha = 8(1-m)/(8+m)$ and $\beta \neq (\delta + n)(1-m)/(9m)$;
- 3) $8(1-m)/(8+m) < \alpha < 1$, $\beta < \beta_1$ and $\beta > \beta_2$.

Proof. The statement follows from the previous two lemmas, noticing that 8(1-m)/(8+m) < 1-m as well as, when $\alpha > 1-m$ and $\beta > (\delta+n)[m-(1-\alpha)]/[2(1-\alpha)]$, that one has $(\delta+n)[m-(1-\alpha)]/[2(1-\alpha)] < \beta_1$. Notice that this last inequality is equivalent to

$$3(1-m)^2(1-\alpha)^2 + 27[m-(1-\alpha)]^2 + 14(1-m)(1-\alpha)[m-(1-\alpha)] > 0,$$
 and this holds true since we are in the case $\alpha > 1-m$.

When $8(1-m)/(8+m) < \alpha < 1$, one can establish the existence of a cyclic solution at $\beta = \beta_*$, with $\beta_* = \beta_1, \beta_2$ if the characteristic equation (9) has a pair of purely imaginary roots and the real parts of these roots change signs. It is clear that $a_1^*a_2^* = a_3^*$ if $\beta = \beta_*$, where a_j^* means a_j (j = 1, 2, 3) evaluated at $\beta = \beta_*$. Consequently, Eq. (9) rewrites as $(\lambda + a_1^*)(\lambda^2 + a_2^*) = 0$. Hence, there exist a pair of purely imaginary roots $\lambda_{1,2} = \pm i\omega_*$, with $\omega_* = \sqrt{a_2^*}$, and a real root $\lambda_3 = -a_1^*$. In order to show that the equilibrium point of system (8) may undergo a Hopf bifurcation for $\beta = \beta_*$ we need to prove that $\lambda_{1,2}$ are simple roots of (9) and satisfy the transversality condition. Differentiating Eq. (9) with respect to β , we obtain

$$(3\lambda^{2} + 2a_{1}\lambda + a_{2})\frac{d\lambda}{d\beta} = -(a'_{1}\lambda^{2} + a'_{2}\lambda + a'_{3}), \qquad (13)$$

where

$$a'_1 = 2$$
, $a'_2 = -\frac{2(\delta + n)[m - (1 - \alpha)]}{1 - \alpha} + 2\beta_*$, $a'_3 = 2(\delta + n)(1 - m)\beta_*$.

To see that $\lambda = i\omega_*$ is a simple root of (9), we proceed assuming it is a repeated root. Then, (13) yields $-a'_1\omega_*^2 + ia'_2\omega_* + a'_3 = 0$, and so the contradiction $\omega_* = 0$. Using $\omega_*^2 = a_2^*$, we can derive from (13) that

$$Re\left[\frac{d\lambda}{d\beta}\right]_{\lambda=i\omega_{*}} = -\frac{a_{1}^{*}\left(a_{2}^{\prime*}\right) + a_{1}^{\prime*}a_{2}^{*} - a_{3}^{\prime*}}{2\left(a_{2}^{*} + a_{1}^{*2}\right)}.$$

Then, we conclude that

$$sign\left\{ \frac{d(Re\lambda)}{d\beta} \bigg|_{\lambda = i\omega_*} \right\} = sign\left\{ -a_1^* a_2'^* - a_1'^* a_2^* + a_3'^* \right\}. \tag{14}$$

If the sign in (14) is positive, then only crossing of the imaginary axis from left to right is possible as β increases. On the other hand, if the sign in (14) is negative, then only crossing from left to right with increasing β occurs. In order to investigate the sign in (14), we observe that

$$a_2^{\prime *} = \frac{a_2^*}{\beta_*} + \beta_*, \quad a_3^{\prime *} = \frac{2}{\beta_*} a_3^* = \frac{2}{\beta_*} a_1^* a_2^*.$$

In this way, a direct calculation allows us to shows that

$$sign\left\{-a_1^*a_2'^* - a_1'^*a_2^* + a_3'^*\right\} = sign\left\{\frac{(\delta + n)^2[m - (1 - \alpha)]^2}{(1 - \alpha)^2} - \beta_*^2\right\}.$$
 (15)

Let us consider the following three cases: $m - (1 - \alpha) = 0$, $m - (1 - \alpha) > 0$ and $m - (1 - \alpha) < 0$. If $m - (1 - \alpha) = 0$, i.e. $\alpha = 1 - m$, then

$$sign\{-a_1^*a_2'^* - a_1'^*a_2^* + a_3'^*\} = sign\{-\beta_*^2\} < 0.$$

If $m - (1 - \alpha) > 0$, i.e. $1 - m < \alpha < 1$, then

$$-a_1^* a_2'^* - a_1'^* a_2^* + a_3'^* > 0 \Leftrightarrow \frac{(\delta + n)[m - (1 - \alpha)]}{(1 - \alpha)} > \beta_*$$
$$\Leftrightarrow \alpha m \pm \sqrt{\alpha m + 8[m - (1 - \alpha)]} < 0.$$

If
$$\beta_* = \beta_2$$
, then $sign\{-a_1^*a_2'^* - a_1'^*a_2^* + a_3'^*\} < 0$. If $\beta_* = \beta_1$, then $\alpha m - \sqrt{\alpha m + 8[m - (1 - \alpha)]} < 0$ holds true. In fact, $\sqrt{\alpha m + 8[m - (1 - \alpha)]} > 0$

 $\sqrt{\alpha m} > \alpha m$ because $m - (1 - \alpha)$ and $\alpha m < 1$. Finally, if $m - (1 - \alpha) < 0$, i.e. $8(1 - m)/(8 + m) < \alpha < 1 - m$, then

$$-a_1^* a_2'^* - a_1'^* a_2^* + a_3'^* > 0 \Leftrightarrow -\frac{(\delta + n)^2 [m - (1 - \alpha)]^2}{(1 - \alpha)^2} > \beta_*$$
$$\Leftrightarrow \alpha m + 8 [m - (1 - \alpha)] \pm \sqrt{\alpha m + 8 [m - (1 - \alpha)]} < 0.$$

If $\beta_* = \beta_2$, then $sign \{-a_1^*a_2'^* - a_1'^*a_2^* + a_3'^*\} < 0$ because $\alpha m + 8 \left[m - (1 - \alpha)\right] > 0$. If $\beta_* = \beta_1$, then $\alpha m + 8 \left[m - (1 - \alpha)\right] - \sqrt{\alpha m + 8 \left[m - (1 - \alpha)\right]} < 0$ when $\alpha m + 8 \left[m - (1 - \alpha)\right] < 1$, i.e. if $\alpha < (9 - 8m)/(8 + m)$. Noticing that 1 - m < (9 - 8m)/(8 + m), we can conclude that this inequality to holds true. Hence, we have $sign \{-a_1^*a_2'^* - a_1'^*a_2^* + a_3'^*\} > 0$. According to the Hopf bifurcation theorem, the previous analysis leads us to the following conclusions.

Theorem 3.4. Let $8(1-m)/(8+m) < \alpha < 1$.

- 1) If $m (1 \alpha) \neq 0$, i.e. $\alpha \neq 1 m$, then system (8) undergoes a Hopf bifurcation at the equilibrium point when $\beta_* = \beta_1$ and $\beta_* = \beta_2$.
- 2) If $m (1 \alpha) = 0$, i.e. $\alpha = 1 m$, then system (8) undergoes a Hopf bifurcation at the equilibrium point when $\beta_* = \beta_2$.

References

- [1] A. Dohtani, T. Inaba and H. Osaka, Corridor Stability of the Neoclassical Steady State, In: Asada, T., Ishikawa, T. (Eds.), Time and Space in Economics. Springer, Tokyo, 2007, 129 - 143. https://doi.org/10.1007/978-4-431-45978-1_7
- [2] A. Dohtani, A growth-cycle model of Solow-Swan type, I, Journal of Economic Behavior & Organization, 76 (2010), 428 444. https://doi.org/10.1016/j.jebo.2010.07.006
- [3] M. Friedman, A Theory of the Consumption Function, Princeton University Press, 1957.
- [4] N. MacDonald, Time Lags in Biological Models, Lecture Notes in Biomathematics, 27, Berlin Heidelberg New York: Springer, 1978.
- R.M. Solow, A contribution to the theory of economic growth, Quarterly Journal of Economics, 70 (1956), 65 - 94. https://doi.org/10.2307/1884513

[6] T.W. Swan, Economic growth and capital accumulation, *Economic Record*, 32 (1956), 334-361.
 https://doi.org/10.1111/j.1475-4932.1956.tb00434.x

Received: June 1, 2024; Published: June 27, 2024